1 William E Reichman, Nathan S Rose. History and experience: the direction of Alzheimer's disease[J]. Menopause, 2012, 19(7): 724-734.
2 Adele Costabile, Eddie R Deaville, Agustin Martin Morales, et al. Prebiotic potential of a maize-based soluble fibre and impact of dose on the human gut microbiota[J]. PloS one, 2016, 11(1): e0144457.
3 James M Hill, Walter J Lukiw. Microbial-generated amyloids and Alzheimer's disease (AD)[J]. Frontiers in Aging Neuroscience, 2015, 7: 9.
4 Surjyadipta Bhattacharjee, Walter J Lukiw. Alzheimer's disease and the microbiome[J]. Frontiers in Cellular Neuroscience, 2013, 7: 153.
5 Masami Minemura, Yukihiro Shimizu. Gut microbiota and liver diseases[J]. J World Gastroenterology, 2015, 21(6): 1691-1702.
6 Kiyofumi Yamada, Toshitaka Nabeshima. Interaction of BDNF/TrkB signaling with NMDA receptor in learning and memory[J]. Drug News Perspect, 2004, 17(7): 435-438.
7 Premysl Bercik, Emmanuel Denou, Josh Collins, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice[J]. Gastroenterology, 2011, 141(2): 599-609. e3.
8 Liang S, Wang T, Hu X, et al. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress[J]. Neuroscience, 2015, 310: 561-577.
9 Bhattacharjee S, Lukiw WJ. Alzheimer's disease and the microbiome. Frontiers in cellular neuroscience 7: 153 ; Matsumoto M, Benno Y (2004) Consumption of Bifidobacterium lactis LKM512 yogurt reduces gut mutagenicity by increasing gut polyamine contents in healthy adult subjects[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 568: 147-153,
10 Salazar N, López P, Valdés Let al. Microbial targets for the development of functional foods accordingly with nutritional and immune parameters altered in the elderly[J]. J American College of Nutrition, 2013, 32(6): 399-406.
11 Marcus J Claesson, Siobhan Cusack, Orla O'Sullivan, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly[J]. Proceedings of the National Academy of Sciences, 2011, 108(suppl1): 4586-4591.
12 Claesson M J, Jeffery I B, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly[J]. Nature, 2012, 488(7410): 178.
13 Odamaki T, Kato K, Sugahara H, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study[J]. BMC Microbiology, 2016, 16: 90.
14 Augusto J Montiel-Castro, Rina M González-Cervantes, Gabriela Bravo-Ruiseco, et al. The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality[J]. Frontiers in Integrative Neuroscience, 2013, 7: 70.
15 Yunes R A, Poluektova E U, Dyachkova M S, et al. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota[J]. Anaerobe, 2016, 42: 197-204.
16 Sun Yun-dong, Zhang Min, Chen Chun-chia, et al. Stress-induced corticotropin-releasing hormone-mediated NLRP6 inflammasome inhibition and transmissible enteritis in mice[J]. Gastroenterology, 2013, 144(7): 1478-1487. e8.
17 O'Mahony S M, Marchesi J R, Scully P, et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses[J]. Biological Psychiatry, 2009, 65: 263-267.
18 Zhao Yu-hai, Walter Lukiw. Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD)[J]. J Nature and Science, 2015, 1(7), pii: e138:
19 Rashid Deane, Shi Du Yan, Ram Kumar Submamaryan, et al. RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain[J]. Nature Medicine, 2003, 9: 907-913.
20 Abdel-Latif M A, Ali H, Elbestawy A R, et al. Exogenous dietary lysozyme improves the growth performance and gut microbiota in broiler chickens targeting the antioxidant and non-specific immunity mRNA expression[J]. PloS One, 2017, 12(10): e0185153.
21 Rashid Deane, Wu Zhen-hua, Abhay Sagare, et al. LRP/amyloid β-peptide interaction mediates differential brain efflux of Aβ isoforms[J]. Neuron, 2004, 43(3): 333-344.
22 Nicolas Weiss, Florence Miller, Sylvie Cazaubon, et al. The blood-brain barrier in brain homeostasis and neurological diseases[J]. Biochimica et Biophysica Acta , 2009, 1788(4): 842-857.
23 James M Hill, Walter J Lukiw. Microbial-generated amyloids and Alzheimer's disease (AD)[J]. Frontiers in aging neuroscience , 2015, 7: 9.
24 Keshava Abbayya, Nagraj Y Puthanakar, Sanjay Naduwinmani, et al. Association between periodontitis and Alzheimer's disease[J]. North American J Medical Sciences, 2015, 7(6): 241.
25 Rebecca Wall, John F Cryan, R Paul Ross, et al. Bacterial neuroactive compounds produced by psychobiotics. Microbial endocrinology: The microbiota-gut-brain axis in health and disease[J]. Advances in Experimental Medicine & Biology, 2014, 817(817):221.
26 Yan Ming-hui, Han Jin, Xu Xiao-fen, et al. Gsy, a novel glucansucrase from Leuconostoc mesenteroides, mediates the formation of cell aggregates in response to oxidative stress[J]. Scientific Reports, 2016, 6: 38122.
27 Helene M Savignac, Yvonne Couch, Michael Stratford, et al. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice[J]. Brain, Behavior, and Immunity, 2016, 52: 120-131.
28 Lehnardt S .Innate immunity and neuroinflammation in the CNS: The role of microglia in Toll‐like receptor‐mediated neuronal injury[J]. Glia, 2010, 58(3): 253-263.
29 Patrice D Cani, Rodrigo Bibiloni, Claude Knauf, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice[J]. Diabetes, 2008, 57(6): 1470-1481.
30 Zhao Yu-hai, Vivian Jaber, Walter J Lukiw. Secretory Products of the Human GI Tract Microbiome and Their Potential Impact on Alzheimer's Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 318.
31 Sandra Anne Banack, Tracie A Caller, Elijah W Stommel. The cyanobacteria derived toxin beta-N-methylamino-L-alanine and amyotrophic lateral sclerosis[J]. Toxins, 2010, 2: 2837-2850.
32 Brenner S R. Blue-green algae or cyanobacteria in the intestinal micro-flora may produce neurotoxins such as Beta-N-Methylamino-L-Alanine (BMAA) which may be related to development of amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson-Dementia-Complex in humans and Equine Motor Neuron Disease in horses[J]. Medical Hypotheses, 2013, 80: 103.
33 Marnie Potgieter, Janette Bester, Douglas B Kell, et al. The dormant blood microbiome in chronic, inflammatory diseases[J]. FEMS Microbiology Reviews, 2015, 39(4): 567-591.
34 雷曦, 王健辉, 程肖蕊等. 基于快速老化模型小鼠SAMP8的CA-30抗阿尔茨海默病的作用研究[J]. 神经药理学报, 2018, 8(02): 44-45.
35 Dalleau S, Baradat M, Gueraud F, et al . Cell death and diseases related to oxidative stress: 4-hydroxynonenal (HNE) in the balance[J]. Cell Death and Differentiation, 2013, 20: 1615.
36 Lap Ho, Qin Wei-ping, Patrick N Pompl, et al. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease[J]. The FASEBJ, 2004, 18(7): 902-904.
37 Pjotr Bekkering, Ismael Jafri, Frans Van Overveld, et al. The intricate association between gut microbiota and development of type 1, type 2 and type 3 diabetes[J]. Expert Review of Clinical Immunology, 2013, 9(11): 1031-1041.
38 I Naseer M, Fehmida Bibi, Mohammed Al-Qahtani, et al. Role of gut microbiota in obesity, type 2 diabetes and Alzheimer’s disease[J]. CNS & Neurological Disorders-Drug Targets, 2014, 13(2): 305-311.
39 Masami Minemura, Yukihiro Shimizu. Gut microbiota and liver diseases[J]. World J Gastroenterology, 2015, 21(6): 1691-1702.
40 Leo Galland. The gut microbiome and the brain[J]. J Medicinal Food, 2014, 17(12): 1261-1272.
41 Anni Woting, Michael Blaut. The intestinal microbiota in metabolic disease[J]. Nutrients, 2016, 8(4): 202. |