[1]罗志毅, 黄新, 包国荣. 大黄中主要成分清除超氧阴离子自由基的ESR研究[J]. 中华中医药学刊, 2007, 25(3): 612-614.[2]沈传勇, 鲁纯素, 郑俊华. 5种大黄蒽醌化合物抗氧化活性的研究[J]. 北京医科大学学报, 1993, 25(增刊5): 85.[3] S S Huang, S F Yeh, C Y Hong. Effect of anthraquinone derivatives on lipid peroxidation in rat heart mitochondria: struck-ture activity relationship[J]. J Nat Prod, 1995, 58(9): 365.[4] C Y Guo, W C Horn, D D Pin. Extraction and identification of an antioxidative component from Jue Ming Zi(Cassia toraL.)[J]. J Agric Food Chem, 1998, 46: 820.[5]Gow-Chin Yen, Pin-Der Duh, Da-Yon Chuang. Antioxidant activity of anthraquinones and anthrone[J]. Food Chem, 2000, 70: 437-441.[6]吕慧英, 赵晨曦, 吴海, 等. 大黄提取物抗氧化活性与游离蒽醌相关性的研究[J]. 中草药, 2010, 41(3): 412-415.[7]Yen GC, Dun PD, Chuang D Y. Antioxidant activity of anthraquinones and anthrone[J]. Food Chemistry, 2000, 70: 437-441.(重复)[8]张丹参, 张力. 大黄酚对大鼠肝过氧化脂质含量的影响[J]. 张家口医学院学报, 1999, 16(1) : 1-2.[9]张丹参, 张力, 薛贵平, 等. 大黄酚的抗衰老作用[J]. 中国医院药学杂志, 2005, 25 (1): 15-17.[10]王树, 薛贵平, 张丹参. 大黄酚对大鼠脑过氧化脂质含量的影响[J]. 张家口医学院学报, 2000, 17(3):3-4.[11]朱成琳, 张丹参, 宋金艳, 等. 大黄酚脂质体对阿尔采末病模型小鼠学习记忆的改善作用[J]. 中国药理学通报, 2012, 28(7): 978-982.[12]宋金艳, 张力, 赵晓倩, 等. 大黄酚脂质体对脑缺血再灌注损伤小鼠海马神经元凋亡的影响[J]. 神经药理学报, 2011, 1(2): 7-13.[13]王树, 张力, 张丹参, 等. 大黄酚对脑缺血再灌注小鼠探索功能的影响[J]. 时珍国医国药, 2007, 18 (12): 3011-3013.[14]王树, 薛贵平, 张丹参, 等. 大黄酚对脑缺血再灌注小鼠学习记忆障碍及耐缺氧的影响[J]. 陕西医学杂志, 2008, 37(4): 402- 404.[15]王树, 张丹参, 张力, 等. 大黄酚对脑缺血再灌注小鼠记忆功能的保护作用[J]. 中国老年学杂志, 2009, 29 (15): 1934-1936.[16]李超. 大黄酚纳米囊、包合物、脂质体三种剂型的组织分布及药效学比较研究[D]. 张家口, 河北北方学院, 2012.[17] T Tominaga, S Kure, K Narisawa, et al. Evidence of apoptosis cell death after focal cerebral ischemia [J]. Brain Res, 1993, 624(1): 32.[18] Tsu-Kung Lin, Ching-Hsiao Cheng, Shang-Der Chen, et al. Mitochondrial dysfunction and oxidative stress promote apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade following chronic rotenone intoxication in rats[J]. Int J Mol Sci, 2012, 13(7): 8722-8739.[19] Ana Sofia Falcão, Rui F M Silva, Ana Rita Vaz, et al. Cross-talk between neurons and astrocytes in response to bilirubin: adverse secondary impacts[J]. Neurotox Res, 2013: 1-15.[20] Lin Jia-Wei, Chen Juei-Tai, Hong Chung-Ye, et al. Honokiol traverses the blood-brain barrier and induces apoptosis of neuroblastoma cells via an intrinsic bax-mitochondrion-cytochrome c-caspase protease pathway [J]. Neuro Oncol, 2012, 14(3): 302-314.[21] Ranjan K Pradhan, Qi Feng, D A Beard, et al. Characterization of Mg2+ inhibition of mitochondrial Ca2+ uptake by a mechanistic model of mitochondrial Ca2+ uniporter[J]. Biophysical J, 2011, 101(9): 2071-2081.[22] Gislaine Z Réus, Helena M Abelaira, Fabiano R Agostinho, et al. The administration of olanzapine and fluoxetine has synergistic effects on intracellular survival pathways in the rat brain[J]. J Psychiatr Res, 2012, 46(8): 1029-1035.[23]Li Z, Zhang L, Liu Z, et al. Down regulation of Bim by brain-derived neuro trophic factor activation of TrkB protects neuroblastoma ceils from paciitaxel but not etoposide or cisplatin-induced cell death[J]. Celi Death Differ, 2007, 14(2): 318-326.[24]宋金艳, 张丹参, 宋志斌, 等. 大黄酚脂质体对脑缺血再灌注损伤小鼠海马脑源性神经营养因子和胶质酸性纤维蛋白表达的影响[J]. 中国药理学与毒理学杂志, 2012, 26 (3): 418.[25]宋金艳, 张力, 赵晓倩, 等. 大黄酚脂质体对脑缺血再灌注损伤小鼠海马神经元凋亡的影响[J]. 神经药理学报, 2011, 1(2): 7-13.[26] H W Querfurth, F M LaFerla. Alzheimer' s disease[J]. N Eng J Med, 2010, 362(4): 329-344.[27] J G Csernansky, M E Bardgett, Y I Sheline, et al. CSF excitatory amino acids and severity of illness in Alzheimer's disease[J]. Neurology, 1996, 46(6): 1715-1720.[28] Ladislav Volicer, Peter B Crino. Involvement of free radicals in dementia of the Alzheimer type:a hypothesis[J]. Neurobiol Aging, 1990, 11(5): 567-571.[29] Paul T Francis, Alan M Palmer, Michael Snape, et al. The cholinergic hypothesis of Alzheimer's disease:a review of progress[J]. J Neurol Neurosurg Psychiatry, 1999, 66(2): 137-147.[30] John Hardy, Dennis J Selkoe. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics[J]. Science, 2002, 297(5580): 353-356.[31] Sridhar Varadarajan, Servet Yatin, Marina Aksenova, et al. Review:Alzheimer's amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity[J]. J Struct Biol, 2000, 130(2-3): 184-208.[32] C Hommet, K Mondon, V Camus, et al. Neuroinflammation and β amyloid deposition in Alzheimer's disease: in vivo quantification with molecular imaging[J]. Dement Geriatr Cogn Disord, 2013, 37(1-2): 1-18.[33] Sara L Montgomery, Wade C Narrow, Michael A Mastrangelo, et al. Chronic neuron- and age-selective down-regulation of TNF receptor expression in triple-transgenic Alzheimer disease mice leads to significant modulation of amyloid- and Tau-related pathologies[J]. Am J Pathol, 2013, 182(6): 2285-2297.[34] L Chico, C Simoncini, A Lo Gerfo, et al. Oxidative stress and APO E polymorphisms in Alzheimer's disease and in mild cognitive impairment[J]. Free Radic Res, 2013, 47(8): 569-576.[35] Sang-Ho Choi, Saba Aid, Hyung-Wook Kim, et al. Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation[J]. J Neurochem, 2012, 120(2): 292-301.[36] S Askarova, X Yang, W Sheng, et al. Role of Abeta-receptor for advanced glycation endproducts interaction in oxidative stress and cytosolic phospholipase A activation in astrocytes and cerebral endothelial cells[J]. Neuroscience, 2011, 199: 375-385.[37]Huang Tai-Chun, Lu Kwok-Tung, Wo Yu-Yuan, et al. Resveratrol protects rats from Abeta-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation[J]. PLoS One, 2011, 6(12): e29102.[38] D Schubert, C Behl, R Lesley, et al. Amyloid peptides are toxic via a common oxidative mechanism[J]. Proc Natl Acad Sci USA, 1995, 92(6): 1989-1993.[39] Greg T Sutherland, Belal Chami, Priscilla Youssef, et al. Oxidative stress in Alzheimer's disease: Primary villain or physiological by-product? [J]. Redox Rep, 2013, 18(4): 134-141.[40] C Holmes, C Cunningham, E Zotova, et al. Systemic inflammation and disease progression in Alzheimer disease[J]. Neurology, 2009, 73(10): 768-774.[41] Kurt M Lucin, Caitlin E O'Brien, Gregor Bieri, et al. Microglial beclin 1 regulates retromer trafficking and phagocytosis and is impaired in Alzheimer's disease[J]. Neuron, 2013, 79(5): 873-86.[42] Vincent T Marchesi. Alzheimer's dementia begins as a disease of small blood vessels, damaged by oxidative-induced inflammation and dysregulated amyloid metabolism: implications for early detection and therapy[J]. FASEB J, 2011, 25(1): 5-13.[43]董晓华, 张丹参. 大黄酚对Aβ25-35所致AD大鼠学习记忆及LTP的影响[J]. 中国药理学通报, 2009, 25(5): 682-685.[44]张丹参. 大黄酚对大鼠海马齿状回突触传递长时程增强的影响[J]. 中国药科大学学报, 2009, 40(2): 152-156.[45]朱成琳, 张丹参, 宋金艳, 等. 大黄酚脂质体对阿尔采末病模型小鼠学习记忆的改善作用[J]. 中国药理学通报, 2012, 28(7): 978-982.[46]李淑娟, 沈丽霞, 张丹参. 大黄酚对小鼠学习记忆的影响[J]. 张家口医学院学报, 2002, 5(19): 22-24.[47]李淑娟, 张力, 张丹参, 等.大黄酚抗衰老作用的实验研究[J]. 中国老年学杂志, 2005, 25: 1362-1364. |