神经药理学报 ›› 2013, Vol. 3 ›› Issue (5): 50-57.
张楠,张祥建
出版日期:
2013-10-26
发布日期:
2014-06-27
通讯作者:
张祥建,男,教授,博士,博士生导师;研究方向:神经病学;E-mail:zhang6xj@aliyun.com
作者简介:
张楠,男,硕士生;研究方向:神经药理学;E-mail:jlx88cn@163.com
基金资助:
国家自然科学基金项目(No.81371287)
ZHANG Nan, ZHANG Xiang-jian
Online:
2013-10-26
Published:
2014-06-27
Contact:
张祥建,男,教授,博士,博士生导师;研究方向:神经病学;E-mail:zhang6xj@aliyun.com
About author:
张楠,男,硕士生;研究方向:神经药理学;E-mail:jlx88cn@163.com
Supported by:
国家自然科学基金项目(No.81371287)
摘要: 炎症反应已被证明在脑缺血再灌损伤中扮演了重要角色。炎症复合体(inflammasome)是胞浆中参与非特异性免疫的一种多蛋白复合物,其功能主要为识别外来或内源性的危险信号,进而激活含半胱氨酸的天冬氨酸蛋白水解酶-1(cysteinyl aspartate specific proteinase-1,caspase-1),调节炎症因子如:白介素1b(IL1b)、白介素18(IL18)的表达。目前,在炎症复合体中,研究最广泛的是由嗜中性白细胞碱性磷酸酶-3(neutrophilic alkaline phosphatase-3,NALP3)、凋亡相关点样蛋白(apoptosis-associated speck-like protein,ASC)及caspase-1组成的NALP3炎症复合体。然而,调节其生成和激活的分子机制仍不十分清楚。近期研究显示,被NALP3激活物诱导产生的活性氧 (reactive oxygen species, ROS) 是活化NALP3炎症复合体必要的二级信号。本文就ROS与NALP3炎症复合体激活间的关系进行讨论。
张楠,张祥建. 嗜中性白细胞碱性磷酸酶炎症复合体的激活与活性氧之间的关系[J]. 神经药理学报, 2013, 3(5): 50-57.
ZHANG Nan, ZHANG Xiang-jian. The Relationship Between reactive oxygen species (ROS) and activation of neutrophilic alkaline phosphatase 3 (NALP3) Inflammasome[J]. Acta Neuropharmacologica, 2013, 3(5): 50-57.
[1] Qiao Hui-min, Zhang Xiang-jian, Zhu Chun-hua, et al. Luteolin downregulates TLR4, TLR5, NF-κB and p-p38MAPK expression, upregulates the p-ERK expression, and protects rat brains against focal ischemia[J]. Brain Res, 2012, 1448: 71-81.[2] Maria L Salskov-Iversen, Claus Johansen, Knud Kragballe, et al. Caspase-5 expression is upregulated in lesional psoriatic skin[J]. J Invest Dermatol, 2011, 131(3): 670-676.[3] Zhou Rong-bin, Aubry Tardivel, Bernard Thorens, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation[J]. Nat Immunol, 2010, 11(2): 136-140.[4] Sanjeev Mariathasan, Kim Newton, Denise M Monack, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf[J]. Nature, 2004, 430(6996): 213-218.[5] Zhang Chun, Krishna M Boini, Xia Min, et al. Activation of Nod-like receptor protein 3 inflammasomes turns on podocyte injury and glomerular sclerosis in hyperhomocysteinemia[J]. Hypertension, 2012, 60(1): 154-162.[6] Fabio Martinon. Signaling by ROS drives inflammasome activation[J]. Eur J Immunol, 2010, 40(3): 616-619.[7] Fabio Martinon, Virginie Pétrilli, Annick Mayor, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome[J]. Nature, 2006, 440(7081): 237-241.[8] Christine Schorn, Benjamin Frey, Kirsten Lauber, et al. Sodium overload and water influx activate the NALP3 inflammasome[J]. J Biol Chem, 2011, 286(1): 35-41.[9] Sutterwala F S, Ogura Y, Zamboni D S, et al. NALP3: a key player in caspase-1 activation[J]. J Endotoxin Res, 2006, 12(4): 251-256.[10] H James Stunden, Eicke Latz. PKR stirs up inflammasomes[J]. Cell Res, 2013, 23(2): 168-170.[11] Wen Chao-yang, Yang Xiao-li, Yan Zhi-feng, et al. Nalp3 inflammasome is activated and required for vascular smooth muscle cell calcification[J]. Int J Cardiol, 2013, 168(3): 2242-2247.[12] Robert Blomgran, Veronika P Brodin, Deepti Verma, et al. Common genetic variations in the NALP3 inflammasome are associated with delayed apoptosis of human neutrophils[J]. PLoS One, 2012, 7(3): e31326.[13] Solomon S Shaftel, Thaddeus J Carlson, John A Olschowka, et al. Chronic interleukin-1β expression in mouse brain leads to leukocyte infiltration and neutrophil-independent blood–brain barrier permeability without overt neurodegeneration[J]. J Neurosci, 2007, 27(35): 9301-9309.[14] Sushmita Jha, Siddharth Y Srivastava, W June Brickey, et al. The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18[J]. J Neurosci, 2010, 30(47): 15811-15820.[15] Zhang Nan, Zhang Xiang-jian, Liu Xiao-xia, et al. Chrysophanol inhibits NALP3 inflammasome activation and ameliorates cerebral ischemia/reperfusion in mice[J]. Mediators of Inflammation, 2014, 2014: 370530.[16] Petrilli V, Papin S, Dostert C, et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration[J]. Cell Death Differ, 2007, 14(9): 1583-1589.[17] Miao Zhi-min, Zhao Shi-hua, Yan Sheng-li, et al. NALP3 inflammasome functional polymorphisms and gout susceptibility[J]. Cell Cycle, 2009, 8(1): 27-30.[18] Ferrero‐Miliani L, Nielsen O H, Andersen P S, et al. Chronic inflammation: importance of NOD2 and NALP3 in interleukin‐1β generation[J]. Clin Exp Immunol, 2007, 147(2): 227-235.[19] Fabio Martinon. Detection of immune danger signals by NALP3[J]. J Leukoc Biol, 2008, 83(3): 507-511.[20] Huang Jun, Li Ya-ning, Tang Yao-hui, et al. CXCR4 antagonist AMD3100 protects blood–brain barrier integrity and reduces inflammatory response after focal ischemia in mice[J]. Stroke, 2013, 44(1): 190-197.[21] Wulf Dröge. Free radicals in the physiological control of cell function[J]. Physiolo Rev, 2002, 82(1): 47-95.[22] Marian Valko, Dieter Leibfritz, Jan Moncol, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. Int J Biochem Cell Biol, 2007, 39(1): 44-84.[23] Ma Wei, Gerald A Berkowitz. The grateful dead: calcium and cell death in plant innate immunity[J]. Cellular Microbiol, 2007, 9(11): 2571-2585.[24] Christian Bogdan, Martin Röllinghoff, Andreas Diefenbach. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity[J]. Curr Opin Immunol, 2000, 12(1): 64-76.[25] Philipp Niethammer, Clemens Grabher, A Thomas Look, et al. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish[J]. Nature, 2009, 459(7249): 996-999.[26] Eric Ogier-Denis, Sanae Ben Mkaddem, Alain Vandewalle. NOX enzymes and Toll-like receptor signaling[C] Seminars Immunopathol, 2008, 30(3): 291-300.[27] Marcello Iriti, Franco Faoro. Review of innate and specific immunity in plants and animals[J]. Mycopathologia, 2007, 164(2): 57-64.[28] Fabio Martinon, Annick Mayor, Jurg Tschopp. The inflammasomes: guardians of the body[J]. Annual Rev Immunol, 2009, 27: 229-265.[29] Clare Bryant, Katherine A Fitzgerald. Molecular mechanisms involved in inflammasome activation[J]. Trends Cell Biol, 2009, 19(9): 455-464.[30] H James Stunden, Eicke Latz. PKR stirs up inflammasomes[J]. Cell Res, 2013, 23(2): 168-170.[31] Robert Blomgran, Veronika Patcha Brodin, Deepti Verma, et al. Common genetic variations in the NALP3 inflammasome are associated with delayed apoptosis of human neutrophils[J]. PLoS One, 2012, 7(3): e31326.[32] Stephen Chivasa, William J Simon, Alex M Murphy, et al. The effects of extracellular adenosine 5′‐triphosphate on the tobacco proteome[J]. Proteomics, 2010, 10(2): 235-244.[33] Eleftheriadis T, Pissas G, Karioti A, et al. Uric acid induces caspase-1 activation, IL-1β secretion and P2X7 receptor dependent proliferation in primary human lymphocytes[J]. Hippokratia, 2013, 17(2): 141-145.[34] Cristiane M Cruz, Alessandra Rinna, Henry Jay Forman, et al. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages[J]. J Biological Chem, 2007, 282(5): 2871-2879.[35] James Hewinson, Samantha F Moore, Christian Glover, et al. A key role for redox signaling in rapid P2X7 receptor-induced IL-1β processing in human monocytes[J]. J Immunol, 2008, 180(12): 8410-8420.[36] Stephanie C Eisenbarth, Oscar R Colegio, William O’Connor, et al. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants[J]. Nature, 2008, 453(7198): 1122-1126.[37] Catherine Dostert, Virginie Pétrilli, Robin Van Bruggen, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica[J]. Science, 2008, 320(5876): 674-677.[38] Yuri Y Sautin, Takahiko Nakagawa, Sergey Zharikov, et al. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress[J]. Am J Physiol Cell Physiol, 2007, 293(2): C584-C596.[39] Song Yuan, Ding Ning, Kanazawa Tamotsu, et al. Cucurbitacin D is a new inflammasome activator in macrophages[J]. Int Immunopharmacol, 2013, 17(4): 1044-1050.[40] Suzanne L Cassel, Stephanie C Eisenbarth, Shankar S Iyer, et al. The Nalp3 inflammasome is essential for the development of silicosis[J]. Proc Natl Acad Sci USA, 2008, 105(26): 9035-9040.[41] Bice Fubini, Andrea Hubbard. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis[J]. Free Radical Biol Med, 2003, 34(12): 1507-1516.[42] Simeonova P P, Luster M I. Iron and reactive oxygen species in the asbestos-induced tumor necrosis factor-alpha response from alveolar macrophages[J]. Am J Respir Cell Mol Biol, 1995, 12(6): 676-683.[43] Laurence Feldmeyer, Martin Keller, Gisela Niklaus, et al. The inflammasome mediates UVB-induced activation and secretion of interleukin-1β by keratinocytes[J]. Curr Biol, 2007, 17(13): 1140-1145.[44] Jin Guang-hui, Liu Yang, Jin Shun-zi, et al. UVB induced oxidative stress in human keratinocytes and protective effect of antioxidant agents[J]. Radiat Environ Biophys, 2007, 46(1): 61-68.[45] Maritza Jaramillo, Marianne Godbout, Martin Olivier. Hemozoin induces macrophage chemokine expression through oxidative stress-dependent and-independent mechanisms[J]. J Immunol, 2005, 174(1): 475-484.[46] Olaf Gross, Hendrik Poeck, Michael Bscheider, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence[J]. Nature, 2009, 459(7245): 433-436.[47] Irving C Allen, Margaret A Scull, Chris B Moore, et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA[J]. Immunity, 2009, 30(4): 556-565.[48] Petrilli V, Papin S, Dostert C, et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration[J]. Cell Death Differ, 2007, 14(9): 1583-1589.[49] G Paul Bolwell. Role of active oxygen species and NO in plant defence responses[J]. Curr Opin Plant Biol, 1999, 2(4): 287-294.[50] Alex J Fay, Qian Xiang, Yuh Nung Jan, et al. SK channels mediate NADPH oxidase-independent reactive oxygen species production and apoptosis in granulocytes[J]. Proc Natl Acad Sci, 2006, 103(46): 17548-17553.[51] Luke A O'Neill. How frustrateon leads to inflammation[J]. Science, 2008, 320(5876): 619-620.[52] Bergstrand H. The generation of reactive oxygen-derived species by phagocytes[J]. Agents Actions. Suppl, 1989, 30: 199-211.[53] Hoffstein S, Weissmann G. Mechanisms of lysosomal enzyme release from leukocytes[J]. Arthritis Rheum, 1975, 18(2): 153-165.[54] Veit Hornung, Franz Bauernfeind, Annett Halle, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization[J]. Nature Immunol, 2008, 9(8): 847-856.[55] Veit Hornung, Eicke Latz. Critical functions of priming and lysosomal damage for NLRP3 activation[J]. Eur J Immunol, 2010, 40(3): 620-623.[56] James A Windelborn, Peter Lipton. Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA‐mediated calcium influx, arachidonic acid metabolism, and free radical production[J]. J Neurochem, 2008, 106(1): 56-69.[57] Li Zheng-zheng, Michael Berk, Thomas M McIntyre, et al. The lysosomal‐mitochondrial axis in free fatty acid–induced hepatic lipotoxicity[J]. Hepatology, 2008, 47(5): 1495-1503.[58] Karen Bedard, Karl-Heinz Krause. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology[J]. Physiol Rev, 2007, 87(1): 245-313.[59] Atsuo Sekiyama, Haruysau Ueda, Shin-ichiro Kashiwamura, et al. A stress-induced, superoxide-mediated caspase-1 activation pathway causes plasma IL-18 upregulation[J]. Immunity, 2005, 22(6): 669-677.[60] Elisabetta Aldieri, Chiara Riganti, Manuela Polimeni, et al. Classical inhibitors of NOX NAD (P) H oxidases are not specific[J]. Curr Drug Metab, 2008, 9(8): 686-696.[61] Samantha F Moore, Amanda B MacKenzie. NADPH oxidase NOX2 mediates rapid cellular oxidation following ATP stimulation of endotoxin-primed macrophages[J]. J Immunol, 2009, 183(5): 3302-3308.[62] Catherine Dostert, Greta Guarda, Jackeline F Romero, et al. Malarial hemozoin is a Nalp3 inflammasome activating danger signal[J]. PLoS One, 2009, 4(8): e6510.[63] Bikash Ranjan Sahoo, Jitendra Maharana, Gopal K Bhoi, et al. A conformational analysis of mouse Nalp3 domain structures by molecular dynamics simulations, and binding site analysis[J]. Mol BioSyst, 2014, 10(5): 1104-1116.[64] Fabio Martinon. Detection of immune danger signals by NALP3[J]. J Leukoc Biol, 2008, 83(3): 507-511.[65] David S Schneider. Plant immunity and film noir: what gumshoe detectives can teach us about plant-pathogen interactions[J]. Cell, 2002, 109(5): 537-540.[66] Pablo Pelegrin, Annmarie Surprenant. Dynamics of macrophage polarization reveal new mechanism to inhibit IL‐1β release through pyrophosphates[J]. EMBO J, 2009, 28(14): 2114-2127.[67] Felix Meissner, Kaaweh Molawi, Arturo Zychlinsky. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock[J]. Nat Immunol, 2008, 9(8): 866-872.[68] Alana A Shigeoka, James L Mueller, Amanpreet Kambo, et al. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury[J]. J Immunol, 2010, 185(10): 6277-6285.[69] Ruslan Medzhitov. Origin and physiological roles of inflammation[J]. Nature, 2008, 454(7203): 428-435.[70] Ma Qing-yi, Chen Sheng, Hu Qin, et al. NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage[J]. Annals Neurol, 2014, 75(2): 209-219. |
[1] | 郝军荣, 牛红双, 刘宜周, 董晓华. 氧化应激在糖尿病肾病中的作用及抗氧化治疗研究进展[J]. 神经药理学报, 2020, 10(2): 33-38. |
[2] | 林思梅, 周虹, 杨宝学. 高尿酸血症与慢性肾脏病相关性研究进展[J]. 神经药理学报, 2020, 10(2): 55-64. |
[3] | 苗明三,彭孟凡,方晓艳,贾佼佼,白明. 大血藤总酚酸对局灶性脑缺血再灌注大鼠脑组织氧化应激水平和能量代谢的影响[J]. 神经药理学报, 2019, 9(1): 1-5. |
[4] | 白如冰,张忠泉,岑娟. P- 糖蛋白在神经元中的表达及氧化应激对P- 糖蛋白的影响[J]. 神经药理学报, 2018, 8(3): 9-. |
[5] | 杨杰,刘富甲,田子夏,王乐乐,谢欣梅,庞晓斌. 脉络宁对MCAO 大鼠的神经保护作用及其抗氧化机制研究[J]. 神经药理学报, 2017, 7(4): 1-7. |
[6] | 王莎莎,张钊,张美金,胡金凤,陈乃宏. Nrf2/ARE信号通路在抑郁症中的研究进展[J]. 神经药理学报, 2016, 6(3): 32-37. |
[7] | 王欢欢,薛茜,邹玉安. 内源性抗氧化应激机制在缺血预处理与缺血再灌注损伤中的研究进展[J]. 神经药理学报, 2016, 6(2): 46-52. |
[8] | 张美金,王莎莎,张钊,陈乃宏,胡金凤. 核转录因子Nrf2 在帕金森病中的作用[J]. 神经药理学报, 2016, 6(1): 35-40. |
[9] | 娄钰霞,张钊,王真真,姜懿纳,张毅,李林,陈乃宏. 帕金森病相关基因DJ-1 与氧化应激[J]. 神经药理学报, 2016, 6(1): 58-64. |
[10] | 王莹莹, 宋修云, 王奇, 陈乃宏. 天然抗氧化剂在阿尔兹海默病中的应用研究进展[J]. 神经药理学报, 2015, 5(6): 30-34. |
[11] | 胡宝玲, 郭春燕. 芍药苷神经保护作用机制的研究进展[J]. 神经药理学报, 2015, 5(6): 51-56. |
[12] | 颜娟,郑茂东. 左卡尼汀的中枢神经系统保护作用[J]. 神经药理学报, 2015, 5(1): 45-50. |
[13] | 周思百,李金泽,刘睿,张天泰. 黄酮类化合物防治阿尔兹海默病及药物研发研究进展[J]. 神经药理学报, 2015, 5(1): 51-58. |
[14] | 赵薇, 李方江, 王树. 大黄酚对小鼠脑缺血再灌注引起肝损伤的保护作用[J]. 神经药理学报, 2014, 4(4): 1-9. |
[15] | 高岩, 楚世峰, 陈乃宏. 亨廷顿舞蹈症、氧化应激与胶质细胞[J]. 神经药理学报, 2014, 4(3): 22-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||