神经药理学报 ›› 2012, Vol. 2 ›› Issue (3): 52-64.
• 综述 • 上一篇
张思1,王烁宇2, 李华南3, 张国福3, 顾兵1
出版日期:
2012-06-26
发布日期:
2013-12-25
通讯作者:
顾兵,男,博士后,教授,硕士生导师;研究方向:神经精神药物学;E-mail: bguemory@hotmail.com
作者简介:
张思,女,江西科技师范大学化学生物学硕士研究生;E-mail:847404553@qq.com
基金资助:
国家自然科学基金资助项目(No.30960448),江西省自然科学基金项目(No.20114BAB205033),江西省教育厅科技项目(No.GJJ11596)
ZHANG Si1, WANG Shuo-yu2, LI Hua-nan3, ZHANG Guo-fu3, GU Bing1
Online:
2012-06-26
Published:
2013-12-25
Contact:
顾兵,男,博士后,教授,硕士生导师;研究方向:神经精神药物学;E-mail: bguemory@hotmail.com
About author:
张思,女,江西科技师范大学化学生物学硕士研究生;E-mail:847404553@qq.com
Supported by:
国家自然科学基金资助项目(No.30960448),江西省自然科学基金项目(No.20114BAB205033),江西省教育厅科技项目(No.GJJ11596)
摘要: 急性脊髓损伤可导致严重的运动、感觉功能障碍。由自由基引起的氧化应激在继发性损伤的病理生理过程中占有重要地位。通过有效的抗氧化干预抑制损伤后生物大分子的过氧化反应,将成为药物治疗脊髓损伤的一条策略。本文主要介绍氧化应激的产生原因、作用过程和参与急性脊髓损伤的病理生理机制,并综述抗氧化药物实验研究最新进展,旨在为寻找安全有效的药物提供参考依据。
中图分类号:
张思,王烁宇, 李华南, 张国福, 顾兵. 急性脊髓损伤后的氧化应激及其抗氧化治疗[J]. 神经药理学报, 2012, 2(3): 52-64.
ZHANG Si, WANG Shuo-yu, LI Hua-nan, ZHANG Guo-fu, GU Bing. Oxidative Stress and Antioxidant Therapy after Acute Spinal Cord Injury[J]. Acta Neuropharmacologica, 2012, 2(3): 52-64.
[1] Florence M Bareyre, Martin E Schwab. Inflammation, degeneration and regeneration in the j injured spinal cord: insights from DNA microarrays [J]. Trends Neurosci, 2003, 26(10): 555-563.[2] Maher P, Schubert D. Signaling by reactive oxygen species in the nervous system [J]. Cell Mol Life Sci, 2000, 57(8-9): 1287-1305.[3] Taku Sugawara, Anders Lewén, Yvan Gasche, et al. Overexpression of SOD1 protects vulnerable motor neurons after spinal cord injury by attenuating mitochondrial cytochrome c release [J]. FASEB J, 2002, 16(14): 1997-1999.[4] Joshua A Smith, Sookyoung Park, James S Krause, et al. Oxidative stress, DNA damage, and the telomeric complex as therapeutic targets in acute neurodegeneration [J]. Neurochem Int, 2013, 62(5): 764-775. [5] Sean D Christie, Ben Comeau, Tanya Myers, et al. Duration of lipid peroxidation after acute spinal cord injury in rats and the effect of methylprednisolone [J]. Neurosurg Focus, 2008, 25(5): E5. [6] Kristin Hamann, Abigail Durkes, H Ouyang, et al. Critical role of acrolein in secondary injury following ex vivo spinal cord trauma [J]. J Neurochem, 2008, 107(3): 712-721. [7] Kristin Hamann, Riyi Shi. Acrolein scavenging: a potential novel mechanism of attenuating oxidative stress following spinal cord injury [J]. J Neurochem, 2009, 111(6): 1348-1356. [8] Edward D Hall, Radhika A Vaishnav, Ayman G Mustafa. Antioxidant therapies for traumatic brain injury [J]. Neurotherapeutics, 2010, 7(1): 51-61. [9] Nosratola D Vaziri, Yu-Shang Lee, Lin Ching-Yi, et al. NAD(P)H oxidase, superoxide dismutase, catalase, glutathione peroxidase and nitric oxide synthase expression in subacute spinal cord injury [J]. Brain Res, 2004, 995(1): 76-83.[10] Vittorina Della Bianca, Stefano Dusi, Ercolina Bianchini, et al. beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer's disease [J]. J Biol Chem, 1999, 274(22): 15493-15499.[11] Edward D Hall. Antioxidant therapies for acute spinal cord injury [J]. Neurotherapeutics, 2011, 8(2): 152-167. [12] Hongshin Lee, Hye-Jin Lee, David L Sedlak, et al. pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide [J]. Chemosphere, 2013, 92(6): 652-658.[13] Sadrzadeh S M, Eaton J W. Hemoglobin-mediated oxidant damage to the central nervous system requires endogenous ascorbate [J]. J Clin Invest, 1988, 82(5): 1510-1515.[14] Dominic M Maggio, Katina Chatzipanteli, Neil Masters, et al. Acute molecular perturbation of inducible nitric oxide synthase with an antisense approach enhances neuronal preservation and functional recovery after contusive spinal cord injury [J]. J Neurotrauma, 2012, 29(12): 2244-2249. [15] Alvarez B, Radi R. Peroxynitrite reactivity with amino acids and proteins [J]. Amino Acids, 2003, 25(3-4): 295-311.[16] Xiong Yi-qin, Edward D Hall. Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury [J]. Exp Neurol, 2009, 216(1): 105-114. [17] Radhika A Vaishnav, Indrapal N Singh, Darren M Miller, et al. Lipid peroxidation-derived reactive aldehydes directly and differentially impair spinal cord and brain mitochondrial function [J]. J Neurotrauma, 2010, 27(7): 1311-1320. [18] Somesree GhoshMitra, David R Diercks, Nathaniel C Mills, et al. Role of engineered nanocarriers for axon regeneration and guidance: current status and future trends [J]. Adv Drug Deliv Rev, 2012, 64(1): 110-125. [19] Shlomo Yehuda, Sharon Rabinovitz, Ralph L Carasso, et al. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane [J]. Neurobiol Aging, 2002, 23(5): 843-853.[20] Joseph S Beckman, Willem H Koppenol. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly [J]. Am J Physiol, 1996, 271(5 Pt 1): C1424-C1437.[21] Xiong Y, Rabchevsky AG, Hall ED. Role of peroxynitrite in secondary oxidative damage after spinal cord injury [J]. J Neurochem, 2007, 100(3): 639-649.[22] Andrzej Malecki, Rosario Garrido, Mark P Mattson, et al. 4-Hydroxynonenal induces oxidative stress and death of cultured spinal cord neurons [J]. J Neurochem, 2000, 74(6): 2278-2287.[23] Every A E, Russu I M. Opening dynamics of 8-oxoguanine in DNA [J]. J Mol Recognit, 2013, 26(4): 175-80. [24] Piao Feng-Yuan, Li Sheng, Li Qiu-Juan, et al. Abnormal expression of 8-nitroguanine in the brain of mice exposed to arsenic subchronically [J]. Ind Health, 2011, 49(2): 151-157. [25] Miral Dizdaroglu, Pawel Jaruga. Mechanisms of free radical-induced damage to DNA [J]. Free Radic Res, 2012, 46(4): 382-419. [26] Christian Garm, Maria Moreno-Villanueva, Alexander Bürkle, et al. Age and gender effects on DNA strand break repair in peripheral blood mononuclear cells [J]. Aging Cell, 2013, 12(1): 58-66. [27] Eva Syková, Alexandr Chvátal. Extracellular ionic and volume changes: the role in glia-neuron interaction [J]. J Chem Neuroanat, 1993, 6(4): 247-260.[28] Thomas Korn, Tim Magnus, Stefan Jung. Interaction with antigen-specific T cells regulates expression of the lactate transporter MCT1 in primary rat astrocytes: specific link between immunity and homeostasis [J]. Glia, 2005, 49(1): 73-83.[29] Young S Gwak, Kang Jong-hoon, Geda C Unabia, et al. Spatial and temporal activation of spinal glial cells: role of gliopathy in central neuropathic pain following spinal cord injury in rats [J]. Exp Neurol, 2012, 234(2): 362-372. [30] Troy T Rohn, Thomas R Hinds, Frank F Vincenzi. Inhibition of Ca2+-pump ATPase and the Na+/K+-pump ATPase by iron-generated free radicals. Protection by 6,7-dimethyl-2,4-DI-1-pyrrolidinyl-7H-pyrrolo[2,3-d] pyrimidine sulfate (U-89843D), a potent, novel, antioxidant/free radical scavenger [J]. Biochem Pharmacol, 1996, 51(4): 471-476.[31] Joe E Springer, Ravikumar Rangaswanmy Rao, Hyang Ran Lim, et al. The functional and neuroprotective actions of Neu2000, a dual-acting pharmacological agent, in the treatment of acute spinal cord injury [J]. J Neurotrauma, 2010, 27(1): 139-149. [32] Urs Bringold, Pedram Ghafourifar, Christoph Richter, et al. Peroxynitrite formed by mitochondrial NO synthase promotes mitochondrial Ca2+ release [J]. Free Radic Biol Med, 2000, 9(3-4): 343-8.[33] Laura B Valdez, Silvia Alvarez, Silvia L Arnaiz, et al. Reactions of peroxynitrite in the mitochondrial matrix [J]. Free Radic Biol Med, 2000, 29(3-4): 349-356.[34] Patrick G Sullivan, Sairam Krishnamurthy, Samir P Patel, et al. Temporal characterization of mitochondrial bioenergetics after spinal cord injury [J]. J Neurotrauma, 2007, 24(6): 991-999.[35] Xu W, Chi L, Xu R, et al. Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury [J]. Spinal Cord, 2005, 43(4): 204-213.[36] Ankita Mehta, Mayank Prabhakar, Puneet Kumar, et al. Excitotoxicity: bridge to various triggers in neurodegenerative disorders [J]. Eur J Pharmacol, 2013, 698(1-3): 6-18. [37] Eugene Park, Alexander A Velumian, Michael G Fehlings. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration [J]. J Neurotrauma, 2004, 21(6): 754-774.[38] Joe E Springer, Robert D Azbill, Robert J Mark, et al. 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake [J]. J Neurochem, 1997, 68(6): 2469-2476.[39] Domenico E Pellegrini-Giampietro, Glovanna Cherici, Marina Alesiani, et al. Excitatory amino acid release and free radical formation may cooperate in the genesis of ischemia-induced neuronal damage [J]. J Neurosci, 1990, 10(3): 1035-1041.[40] Hong Z Yin, Cheng-I Hsu, Stephen Yu, et al. TNF-α triggers rapid membrane insertion of Ca(2+) permeable AMPA receptors into adult motor neurons and enhances their susceptibility to slow excitotoxic injury [J]. Exp Neurol, 2012, 238(2): 93-102. [41] Storey K B. Oxidative stress: animal adaptations in nature [J]. Braz J Med Biol Res, 1996, 29(12): 1715-1733.[42] Irwin Fridovich. Superoxide radical and superoxide dismutases [J]. Annu Rev Biochem, 1995, 64: 97-112.[43] Jen Hill Lucas, Debra G Wheeler, Zhen Guan, et al. Effect of glutathione augmentation on lipid peroxidation after spinal cord injury [J]. J Neurotrauma, 2002, 19(6): 763-775.[44] Stephen G Hummel, Anthony J Fischer, Sean M Martin, et al. Nitric oxide as a cellular antioxidant: a little goes a long way [J]. Free Radic Biol Med, 2006, 40(3): 501-506.[45] Wang Qiang, Chen Qiong, Ding Qian, et al. Sevoflurane postconditioning attenuates spinal cord reperfusion injury through free radicals-mediated up-regulation of antioxidant enzymes in rabbits [J]. J Surg Res, 2011, 169(2): 292-300. [46] Mohamed D Morsy, Ossama A Mostafa, Waleed N Hassan. A potential protective effect of alpha-tocopherol on vascular complication in spinal cord reperfusion injury in rats [J]. J Biomed Sci, 2010, 17: 55. [47] Mohamed D Morsy, Salah O Bashir. Alpha-tocopherol ameliorates oxidative renal insult associated with spinal cord reperfusion injury [J]. J Physiol Biochem, 2013, 69(3): 487-496. [48] Yuuji Taoka, Takaaki Ikata, Kenji Fukuzawa, et al. Influence of dietary vitamin E deficiency on compression injury of rat spinal cord [J]. J Nutr Sci Vitaminol (Tokyo), 1990, 36(3): 217-226.[49] L Jackson Roberts, John A Oates, MacRae F Linton, et al. The relationship between dose of vitamin E and suppression of oxidative stress in humans [J]. Free Radic Biol Med, 2007, 43(10): 1388-1393.[50] Edward D Hall, Yonkers P A, Andrus P K, et al. Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury [J]. J Neurotrauma, 1992, 9 Suppl 2: S425-S442.[51] Edward D Hall, Daniel L Wolf, J Mark Braughler. Effects of a single large dose of methylprednisolone sodium succinate on experimental posttraumatic spinal cord ischemia. Dose-response and time-action analysis [J]. J Neurosurg, 1984, 61(1): 124-130.[52] Wise Young, Eugene S Flamm. Effect of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury [J]. J Neurosurg, 1982, 57(5): 667-673.[53] Douglas K Anderson, Eugene D Means, Thomas R Waters, et al. Microvascular perfusion and metabolism in injured spinal cord after methylprednisolone treatment [J]. J Neurosurg, 1982, 56(1): 106-113.[54] Lin Hong-Sheng, Ji Zhi-Sheng, Zheng L H, et al. Effect of methylprednisolone on the activities of caspase-3, -6, -8 and -9 in rabbits with acute spinal cord injury [J]. Exp Ther Med, 2012, 4(1): 49-54. [55] Sean D Christie, Ben Comeau, Tanya Myers, et al. Duration of lipid peroxidation after acute spinal cord injury in rats and the effect of methylprednisolone [J]. Neurosurg Focus, 2008, 25(5): E5. [56] Hirotaka Chikuda, Hideo Yasunaga, Katsushi Takeshita, et al. Mortality and morbidity after high-dose methylprednisolone treatment in patients with acute cervical spinal cord injury: a propensity-matched analysis using a nationwide administrative database [J]. Emerg Med J, 2013, doi:10.1136/emermed-2012-202058.[57] Daniel J Del Gaizo, Conor M Regan, Ronald D Graff, et al. The effect of methylprednisolone intravenous infusion on the expression of ciliary neurotrophic factor in a rat spinal cord injury model [J]. Spine J, 2013,13(4): 439-442. [58] Braughler J M, Chase R L, Neff G L, et al. A new 21-aminosteroid antioxidant lacking glucocorticoid activity stimulates adrenocorticotropin secretion and blocks arachidonic acid release from mouse pituitary tumor (AtT-20) cells [J]. J Pharmacol Exp Ther, 1988, 244(2): 423-427.[59] Edward D Hall. Effects of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia in cats [J]. J Neurosurg, 1988, 68(3): 462-465.[60] Douglas K Anderson, Edward D Hall, J Mark Braughler, et al. Effect of delayed administration of U74006F (tirilazad mesylate) on recovery of locomotor function after experimental spinal cord injury [J]. J Neurotrauma, 1991, 8(3): 187-192.[61] Koc R K, Akdemir H, Karakücük E I, et al. Effect of methylprednisolone, tirilazad mesylate and vitamin E on lipid peroxidation after experimental spinal cord injury [J]. Spinal Cord, 1999, 37(1): 29-32.[62] Mona Bains, Edward D Hall. Antioxidant therapies in traumatic brain and spinal cord injury [J]. Biochim Biophys Acta, 2012, 1822(5): 675-684. [63] Reiter R J, Carneiro R C, Oh C S. Melatonin in relation to cellular antioxidative defense mechanisms [J]. Horm Metab Res, 1997, 29(8): 363-372.[64] Biancamaria Longoni, M Giulia Salgo, William A Pryor, et al. Effects of melatonin on lipid peroxidation induced by oxygen radicals [J]. Life Sci, 1998, 62(10): 853-859.[65] Zhang Hou-wen, Giuseppe L Squadrito, William A Pryor. The reaction of melatonin with peroxynitrite: formation of melatonin radical cation and absence of stable nitrated products [J]. Biochem Biophys Res Commun, 1998, 251(1): 83-87.[66] Supriti Samantaray, Arabinda Das, Nakul P Thakore, et al. Therapeutic potential of melatonin in traumatic central nervous system injury [J]. J Pineal Res, 2009, 47(2): 134-142.[67] Fujimoto T, Nakamura T, Ikeda T, et al. Potent protective effects of melatonin on experimental spinal cord injury [J]. Spine (Phila Pa 1976), 2000, 25(7): 769-75.[68] Mehmet Er?ahin, Zarife Özdemir, Derya Özsavc?, et al. Melatonin treatment protects against spinal cord injury induced functional and biochemical changes in rat urinary bladder [J]. J Pineal Res, 2012, 52(3): 340-348. [69] Tiziana Genovese, Emanuela Mazzon, Concetta Crisafulli, et al. Effects of combination of melatonin and dexamethasone on secondary injury in an experimental mice model of spinal cord trauma [J]. J Pineal Res, 2007, 43(2): 140-153.[70] Yonggeun Hong, K J Palaksha, Kanghui Park, et al. Melatonin plus exercise-based neurorehabilitative therapy for spinal cord injury [J]. J Pineal Res, 2010, 49(3): 201-209. [71] Matthew L Kelso, Nicole N Scheff, Scheff W Scheff, et al. Melatonin and minocycline for combinatorial therapy to improve functional and histopathological deficits following traumatic brain injury [J]. Neurosci Lett, 2011, 488(1): 60-64. [72] Truyen Nguyen, Philip J Sherratt, Cecil B Pickett. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element [J]. Annu Rev Pharmacol Toxicol, 2003, 43: 233-260.[73] Hozumi Motohashi, Masayuki Yamamoto. Nrf2-Keap1 defines a physiologically important stress response mechanism [J].Trends Mol Med, 2004, 10(11): 549-557.[74] Li Jiang, Delinda Johnson, Marcus Calkins, et al. Stabilization of Nrf2 by tBHQ confers protection against oxidative stress-induced cell death in human neural stem cells [J]. Toxicol Sci, 2005, 83(2): 313-28. [75] Darren M Miller, Indrapal N Singh, Juan A Wang, et al. Administration of the Nrf2-ARE activators sulforaphane and carnosic acid attenuates 4-hydroxy-2-nonenal-induced mitochondrial dysfunction ex vivo [J]. Free Radic Biol Med, 2013, 57: 1-9. [76] Duan Wei-song, Zhang Rui-yan, Guo Yan-su, et al. Nrf2 activity is lost in the spinal cord and its astrocytes of aged mice [J]. In Vitro Cell Dev Biol Anim, 2009, 45(7): 388-397. [77] Li Wei-Chao, Jiang Dian-Ming, Hu Ning, et al. Lipopolysaccharide preconditioning attenuates neuroapoptosis and improves functional recovery through activation of Nrf2 in traumatic spinal cord injury rats [J]. Int J Neurosci, 2013, 123(4): 240-247. [78] Wang Xiao-liang, Juan Pablo de Rivero Vaccari, Wang Han-dong, et al. Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury [J]. J Neurotrauma, 2012, 29(5): 936-945. [79] Mao Lei, Wang Han-dong, Wang Xiao-liang, et al. Transcription factor Nrf2 protects the spinal cord from inflammation produced by spinal cord injury [J]. J Surg Res, 2011, 170(1): e105-e115.[80] Christopher S Wilcox. Effects of tempol and redox-cycling nitroxides in models of oxidative stress [J]. Pharmacol Ther, 2010, 126(2): 119-145. [81] Richard T Carroll, Paul Galatsis, Susan Borosky, et al. 4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) inhibits peroxynitrite-mediated phenol nitration [J]. Chem Res Toxicol, 2000, 13(4): 294-300.[82] Quan Hong-Hua, Kang Ku-Seong, Sohn Yoon-Kyung, et al. Tempol reduces injury area in rat model of spinal cord contusion injury through suppression of iNOS and COX-2 expression [J]. Neurol Sci, 2013,doi 10.1007/s10072-013-1295-y.[83] Xiong Yi-qin, Indrapal N Singh, Edward D Hall. Tempol protection of spinal cord mitochondria from peroxynitrite-induced oxidative damage [J]. Free Radic Res, 2009, 43(6): 604-612.[84] Xiong Yi-qin, Alexander G Rabchevsky, Edward D Hall. Role of peroxynitrite in secondary oxidative damage after spinal cord injury [J]. J Neurochem, 2007, 100(3): 639-649. [85] Virany H Hillard, Peng Hong, Zhang Yan, et al. Tempol, a nitroxide antioxidant, improves locomotor and histological outcomes after spinal cord contusion in rats [J]. J Neurotrauma, 2004, 21(10): 405-414.[86] Shazib Pervaiz, Andrea Lisa Holme. Resveratrol: its biologic targets and functional activity [J]. Antioxid Redox Signal, 2009, 11(11): 2851-2897. [87] Ates Ozkan, Suleyman Cayli, Eyup Altinoz, et al. Neuroprotection by resveratrol against traumatic brain injury in rats [J]. Mol Cell Biochem, 2007, 294(1-2): 137-144. [88] Uqursay Kiziltepe, N Nilufer Turan, Unsal Han, et al. Resveratrol, a red wine polyphenol, protects spinal cord from ischemia-reperfusion injury [J]. J Vasc Surg, 2004, 40(1): 138-145.[89] Ozkan Ates, Suleyman Cayli, Eyup Altinoz, et al. Effects of resveratrol and methylprednisolone on biochemical, neurobehavioral and histopathological recovery after experimental spinal cord injury [J]. Acta Pharmacol Sin, 2006, 27(10): 1317-1325.[90] Liu Chang-jiang, Shi Zhi-bin, Fan Li-hong, et al. Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury [J]. Brain Res, 2011, 1374: 100-109. [91] V Kesherwani, F Atif, S Yousuf, et al. Resveratrol protects spinal cord dorsal column from hypoxic injury by activating Nrf-2 [J]. Neuroscience, 2013, 241: 80-88. [92] Sahin Kavakl? Havva, Koca Cemile, Al?c? Ozlem. Antioxidant effects of curcumin in spinal cord injury in rats [J]. Ulus Travma Acil Cerrahi Derg, 2011, 17(1): 14-18.[93] Wu Aiguo, Ying Zhe, Schubert D, et al. Brain and spinal cord interaction: a dietary curcumin derivative counteracts locomotor and cognitive deficits after brain trauma [J]. Neurorehabil Neural Repair, 2011, 25(4): 332-342. [94] Berker Cemil, Kivanc Topuz, Mehmet Nusret Demircan, et al. Curcumin improves early functional results after experimental spinal cord injury [J]. Acta Neurochir (Wien), 2010, 152(9): 1583-1590.[95] Ahmet Metin Sanli, Erhan Turkoglu, Gokhan Serbes, et al. Effect of curcumin on lipid peroxidation, early ultrastructural findings and neurological recovery after experimental spinal cord contusion injury in rats [J]. Turk Neurosurg, 2012, 22(2): 189-195. [96] D Ryan Ormond, Peng Hong, Richard Zeman, et al. Recovery from spinal cord injury using naturally occurring antiinflammatory compound curcumin [J]. J Neurosurg Spine, 2012, 16(5): 497-503[97] Nima Alamdari, Patrick O'Neal, Per-Olof Hasselgren. Curcumin and muscle wasting: a new role for an old drug? [J]. Nutrition, 2009, 25(2): 125-9. [98] Kristin Hamann, Genevieve Nehrt, Hui Ouyang, et al. Hydralazine inhibits compression and acrolein-mediated injuries in ex vivo spinal cord [J]. J Neurochem, 2008, 104(3): 708-718. [99] Schültke E, Griebel R W, Juurlink B H. Quercetin attenuates inflammatory processes after spinal cord injury in an animal model [J]. Spinal Cord, 2010, 48(12): 857-861. [100] Ahmet Metin Sanli, Gokhan Serbes, Mustafa F Sargon, et al. Methothrexate attenuates early neutrophil infiltration and the associated lipid peroxidation in the injured spinal cord but does not induce neurotoxicity in the uninjured spinal cord in rats [J]. Acta Neurochir (Wien), 2012, 154(6): 1045-1054. [101] Kouhzaei Sogolie, Rad Iman, Mousavidoust Sara, et al. Protective effect of low molecular weight polyethylene glycol on the repair of experimentally damaged neural membranes in rat's spinal cord [J]. Neurol Res, 2013, 35(4): 415-423. [102] Melanie L McEwen, Sullivan G Sullivan, Joe E Springer. Pretreatment with the cyclosporin derivative, NIM811, improves the function of synaptic mitochondria following spinal cord contusion in rats [J]. J Neurotrauma, 2007, 24(4): 613-624.[103] Nuray Yazihan, Kubilay Uzuner, Bulent Salman, et al. Erythropoietin improves oxidative stress following spinal cord trauma in rats [J]. Injury, 2008, 39(12): 1408-1413. [104] Kadir Tufan, Namik Oztanir, Ebru Ofluoglu, et al. Ultrastructure protection and attenuation of lipid peroxidation after blockade of presynaptic release of glutamate by lamotrigine in experimental spinal cord injury [J]. Neurosurg Focus, 2008, 25(5): E6. [105] Mu Xiao-jun, Robert D Azbill, Joe E Springer. Riluzole improves measures of oxidative stress following traumatic spinal cord injur [J]. Brain Res, 2000, 870(1-2): 66-72.[106] Bardakci H, Kaplan S, Karadeniz U, et al. Methylene blue decreases ischemia-reperfusion (I/R)-induced spinal cord injury: an in vivo study in an I/R rabbit model [J]. Eur Surg Res, 2006, 38(5): 482-488. [107] Hale Z Toklu, Tayfun Hakan, H Celik, et al. Neuroprotective effects of alpha-lipoic acid in experimental spinal cord injury in rats [J]. J Spinal Cord Med, 2010, 33(4): 401-409.[108] Hakan Kayali, M Fatih Ozdag, Serdar Kahraman, et al. The antioxidant effect of beta-Glucan on oxidative stress status in experimental spinal cord injury in rats [J]. Neurosurg Rev, 2005, 28(4): 298-302. |
[1] | 刘杉, 李炜. L- 茶氨酸药理作用的研究进展[J]. 神经药理学报, 2020, 10(2): 24-32. |
[2] | 郝军荣, 牛红双, 刘宜周, 董晓华. 氧化应激在糖尿病肾病中的作用及抗氧化治疗研究进展[J]. 神经药理学报, 2020, 10(2): 33-38. |
[3] | 林思梅, 周虹, 杨宝学. 高尿酸血症与慢性肾脏病相关性研究进展[J]. 神经药理学报, 2020, 10(2): 55-64. |
[4] | 苗明三,彭孟凡,方晓艳,贾佼佼,白明. 大血藤总酚酸对局灶性脑缺血再灌注大鼠脑组织氧化应激水平和能量代谢的影响[J]. 神经药理学报, 2019, 9(1): 1-5. |
[5] | 白如冰,张忠泉,岑娟. P- 糖蛋白在神经元中的表达及氧化应激对P- 糖蛋白的影响[J]. 神经药理学报, 2018, 8(3): 9-. |
[6] | 詹佳虹,简文轩,万江帆,等. 天然化合物治疗缺血性脑卒中抗氧化作用机制的研究进展[J]. 神经药理学报, 2017, 7(6): 60-64. |
[7] | 杨杰,刘富甲,田子夏,王乐乐,谢欣梅,庞晓斌. 脉络宁对MCAO 大鼠的神经保护作用及其抗氧化机制研究[J]. 神经药理学报, 2017, 7(4): 1-7. |
[8] | 杜云广,曹欣欣,王晓茹,王书华. 牡荆苷对脑缺血再灌注大鼠脑损伤保护作用及其机制研究[J]. 神经药理学报, 2017, 7(1): 10-23. |
[9] | 苏蕾,景永帅,张丹参. 生物活性多糖的神经保护作用研究进展[J]. 神经药理学报, 2016, 6(4): 37-41. |
[10] | 王晓茹,杜云广,王书华,安芳. 荭草苷和牡荆苷对H2O2氧化损伤人红细胞的保护作用[J]. 神经药理学报, 2016, 6(4): 1-12. |
[11] | 王莎莎,张钊,张美金,胡金凤,陈乃宏. Nrf2/ARE信号通路在抑郁症中的研究进展[J]. 神经药理学报, 2016, 6(3): 32-37. |
[12] | 王欢欢,薛茜,邹玉安. 内源性抗氧化应激机制在缺血预处理与缺血再灌注损伤中的研究进展[J]. 神经药理学报, 2016, 6(2): 46-52. |
[13] | 颜娟,郑茂东,崔玉环,魏玉磊,田青青,张丹参. 大黄酚脂质体对脑缺血再灌注损伤小鼠动态抗氧化作用研究[J]. 神经药理学报, 2016, 6(1): 9-17. |
[14] | 张美金,王莎莎,张钊,陈乃宏,胡金凤. 核转录因子Nrf2 在帕金森病中的作用[J]. 神经药理学报, 2016, 6(1): 35-40. |
[15] | 娄钰霞,张钊,王真真,姜懿纳,张毅,李林,陈乃宏. 帕金森病相关基因DJ-1 与氧化应激[J]. 神经药理学报, 2016, 6(1): 58-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||