Acta Neuropharmacologica ›› 2014, Vol. 4 ›› Issue (6): 21-27.
Previous Articles Next Articles
LI Ting, SU Tao, HE Ying-ge, HE Rong-qiao
Online:
2014-12-26
Published:
2015-01-20
Contact:
赫荣乔,男,研究员,研究方向:认知损伤;Tel:010-64889876,E-mail: herq@sun5.ibp.ac.cn
About author:
李婷,女,中国科学院生物物理研究所硕博连读生;E-mail: liting211@mails.ucas.ac.cn
Supported by:
国家重大基础研究计划973项目课题(No.2012CB911000)
CLC Number:
LI Ting, SU Tao, HE Ying-ge, HE Rong-qiao. Formaldehyde, an Epigenetic Factor for Learning and Memory Participating In Histone (de)methylation[J]. Acta Neuropharmacologica, 2014, 4(6): 21-27.
[1] Murray K. The Occurrence of iε-N-Methyl lysine in histones[J]. Biochemistry, 1964, 3(1):10-15.[2] Marianne Terndrup Pedersen, Kristian Helin. Histone demethylases in development and disease[J]. Trends Cell Biol, 2010, 20(11): 662-671.[3] Prakash S, Singh R, Lodhi N. Histone demethylases and control of gene expression in plants[J]. Cell Mol Biol, 2014, 60(5):97-105.[4] Daniel P Mould, Alison E McGonagle, Daniel H Wiseman, et al. Reversible inhibitors of LSD1 as therapeutic agents in acute myeloid leukemia: clinical significance and progress to date[J]. Med Res Rev, 2014, doi: 10.1002/med.21334.[5] Shi Y J, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1[J]. Cell, 2004, 119(7): 941-953.[6] Vivian G Cheung, Stephanie L Sherman, Eleanor Feingold. Genetics.Genetic control of hotspots[J]. Science, 2010, 327(5967): 791-792.[7] Valerie Borde, Nicolas Robine, Waka Lin, et al. Histone H3 lysine 4 trimethylation marks meiotic recombination initiation sites[J]. EMBO J, 2009, 28(2): 99-111.[8] Timothy J Jarome, Jasmyne S Thomas, Farah D Lubin. The epigenetic basis of memory formation and storage[J]. Prog Mol Biol Transl Sci, 2014, 128:1-27. [9] Richard B Meagher. Memory and molecular turnover, 30 years after inception[J]. Epigenetics Chromatin, 2014, 7(1):37.[10] 童志前, 万有, 罗文鸿, 等. 内源性甲醛及其相关人类重大疾病[J]. 自然科学进展, 2008, 18(11):1201-1206.[11] Shandrenko C H, Savchuk M M, Dmytrenko M P. Method for endogenous formaldehyde evaluation in animal organism[J]. Ukr Biokhim Zh, 2011, 83(6): 110-5.[12] Zhang Liu-ping, Wang Jie, Pan Yao-qian, et al. Expression of histone H3 lysine 4 methylation and its demethylases in the developing mouse testis[J]. Cell Tissue Res, 2014, 358(3):875-883.[13] Cheng Mo-bin, Zhang Yan, Cao Chun-yu, et al. Specific phosphorylation of histone demethylase KDM3A determines target gene expression in response to heat shock[J]. PLoS Biol, 2014, 12(12):e1002026. [14] Isuru R Kumarasinghe, Patrick M Woster, Synthesis and evaluation of novel cyclic Peptide inhibitors of lysine-specific demethylase 1[J]. ACS Med Chem Lett, 2013, 5(1):29-33. [15] Chang Bing-sheng, Chen Yue, Zhao Ying-ming, et al. JMJD6 is a histone arginine demethylase[J]. Science, 2007, 318(5849): 444-447.[16] Zhou Chen, Kang Di, Xu Yun-gen, et al. Identification of novel selective lysine specific demethylase 1 (LSD1) inhibitors using a pharmacophore based virtual screening combined with docking[J]. Chem Biol Drug Des, 2014, doi: 10.1111/cbdd.12461. [17] Ramesh Neelamegam, Emily Ricq, Melissa Malvaez, et al. Brain-penetrant LSD1 inhibitors can block memory consolidation[J]. ACS Chem Neurosci, 2012, 3(2): 120-128.[18] 胡鑫. LSD1表观遗传修饰对TAL1功能和机体造血调控机制的研究[D]. 长春:吉林大学, 2009.[19] Cai C, He H H, Gao S, et al. Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity[J]. Cell Rep, 2014, 9(5):1618-1627. [20] Polina Prusevich, Jay H Kalin, Shonoi A Ming, et al. A selective phenelzine analogue inhibitor of histone demethylase LSD1[J]. ACS Chem Biol, 2014, 9(6):1284-1293. [21] Martin L Schmitt, Kathrin I Ladwein, Luca Carlino,et al. Heterogeneous antibody-based activity assay for lysine specific demethylase 1 (LSD1) on a histone peptide substrate[J]. J Biomol Screen, 2014, 19(6):973-978.[22] Eric Metzger, Melanie Wissmann, Na Yin. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription[J]. Nature, 2005, 437(7075): 436-439.[23] Shi Yu-jiang, Maston Caitlin, Lan Fei, et al. Regulation of LSD1 histone short article demethylase activity by its associated factors[J]. Mol Cell, 2005, 19(6): 857-864.[24] Francesca De Santa, Maria Grazia Totaro, Elena Prosperini, et al. The histone H3 lysine-27 demethylase jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing[J]. Cell, 2007, 130(6): 1083-1094.[25] 郭晓强, 马克世. 组蛋白去甲基化酶JMJD家族的特点和功能[J]. 生命的化学, 2008, 28(3): 275-278.[26] Tomek Swigut, Joanna Wysocka. H3K27 demethylases, at long last[J]. Cell, 2007, 131(1): 29-32.[27] Tian Xiao-qing, Fang Jing-yuan. Current perspectives on histone demethylases[J]. Acta Biochim Biophys Sin, 2007, 39(2): 81-88.[28] 张洁. LSD1对斑马鱼发育的影响及其机制的初步研究[D]. 上海:复旦大学, 2009.[29] Federico Forneris, Elena Battaglioli, Andrea Mattevi, et al. New roles of flavoproteins in molecular cell biology: Histone demethylase LSD1 and chromatin[J]. FEBS J, 2009, 276(16): 4304-4312.[30] Timothy J Jarome, Farah D Lubin. Histone lysine methylation: critical regulator of memory and behavior[J]. Rev Neurosci, 2013, 24(4): 375-387.[31] Zhang Feng, Xu Dan, Yuan Ling, et al. Epigenetic regulation of Atrophin1 by lysine-specific demethylase 1 is required for cortical progenitor maintenance[J]. Nat Commun, 2014, 5:5815.[32] Ming-Chia Lee, Allan C Spradling. The progenitor state is maintained by lysine-specific demethylase 1-mediated epigenetic plasticity during Drosophila follicle cell development[J]. Genes Dev, 2014, 28(24):2739-2749.[33] James M Hill, Debra C Quenelle, Rhonda D Cardin, et al. Inhibition of LSD1 reduces herpesvirus infection, shedding, and recurrence by promoting epigenetic suppression of viral genomes[J]. Sci Transl Med, 2014, 6(265):265ra169. [34] Joshua D Rizak, Ma Yuan-ye, Hu Xin-tian. Is formaldehyde the missing link in AD pathology? The differential aggregation of amyloid-beta with APOE isoforms in vitro[J]. Curr Alzheimer Res, 2014, 11(5):461-468.[35] Chen Jin-yan, Sun Meng-ru, Wang Xing-hua, et al. The herbal compound geniposide rescues formaldehyde-induced apoptosis in N2a neuroblastoma cells[J]. Sci China Life Sci, 2014, 57(4):412-421.[36] Hou Qin-long, Jiang Hou-qing, Zhang Xu, et al. Nitric oxide metabolism controlled by formaldehyde dehydrogenase (fdh, homolog of mammalian GSNOR) plays a crucial role in visual pattern memory in Drosophila[J]. Nitric Oxide-Biology and Chemistry, 2011, 24(1):17-24.[37] Wu Kai-yuan, Ren Ruo-tong, Su Wen-ting, et al. A novel suppressive effect of alcohol dehydrogenase 5 in neuronal differentiation[J]. J Biological Chemistry, 2014, 289(29):20193-20199.[38] Qiang Min, Xiao Rong, Su Tao, et al. A Novel mechanism for endogenous formaldehyde elevation in SAMP8 mouse[J]. J Alzheimers Dis, 2014, 40(4): 1039-1053.[39] Su Tao, Wei Yan, He Rong-qiao. Assay of brain endogenous formaldehyde with 2,4-dinitrophenylhydrazine through UV-HPLC[J]. Progress in Biochemistry and Biophysics, 2011, 38(12): 1171-1177.[40] Yu Jing, Su Tao, Zhou Ting, et al. Uric formaldehyde levels are negatively correlated with cognitive abilities in healthy older adults[J]. Neurosci Bull, 2014, 30(2):172-184.[41] Tong Zhi-qian, Zhang Jin-ling, Luo Wen-hong, et al. Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia[J]. Neurobiol Aging, 2011, 32(1): 31-41.[42] Tong Zhi-qian, Han Chan-shuai, Miao Jun-ye, et al. Excess endogenous formaldehyde induces memory decline[J]. Prog Biochem Biophys, 2011, 38(6): 575-579.[43]Tong Zhi-qian, Han Chan-shuai, Luo Wen-hong, et al. Accumulated hippocampal formaldehyde induces age-dependent memory decline[J]. Age (Dordr), 2012, 35(3): 583-596.[44] Nie Chun-lai, Wei Yan, Chen Xin-yong, et al. Formaldehyde at low concentration induces protein tau into globular amyloid-like aggregates in vitro and in vivo[J]. PLoS One, 2007, 2(7): e629.[45] Lu Jing, Miao Jun-ye, Su Tao, et al. Formaldehyde induces hyperphosphorylation and polymerization of Tau protein both in vitro and in vivo[J]. Biochim Biophys Acta, 2013, 1830(8): 4102-4116.[46] Wei Yan, Miao Jun-ye, Liu Ying. Endogenous and exogenous factors in Tau abnormal phosphorylation in early stage of Alzheimer’s disease[J]. Prog Biochem Biophys, 2012, 39(8): 778-784.[47] Tong Zhi-qian, Han Chan-shuai, Qiang Min, et al. Age-related formaldehyde contributes to topographic amnesia in Alzheimer’s disease patients by down-regulating DNA methyltransferases[J]. Neurobiol Aging, 2015, 36(1):100-110.[48] Liu Qing-cheng, Yang Lin-qing, Gong Chun-mei, et al. Effects of long-term low-dose formaldehyde exposure on global genomic hypomethylation in 16HBE cells[J]. Toxicol Lett, 2011, 205(3):235-240.[49] Zhang F W, Du J B, Tang C S. Endogenous formaldehyde and cardiovascular diseases[J]. Sheng Li Ke Xue Jin Zhan, 2014, 41(1): 17-21.[50] Shandrenko C H, Savchuk M M, Dmytrenko M P. Method for endogenous formaldehyde evaluation in animal organism[J]. Ukr Biokhim Zh, 2011, 83(6):110-115.[51] Huba Kalász. Biological role of formaldehyde, and cycles related to methylation, demethylation, and formaldehyde production[J]. Mini Rev Med Chem, 2003, 3(3): 175-192.[52] Lyles G A. Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects[J]. Int J Biochem Cell Biol, 1996, 28(3): 259-274.[53] Henikoff S, Smith M M. Histone variants and epigenetics[J]. Cold Spring Harb Perspect Biol, 2015, 7(1). doi: 10.1101/cshperspect.a019364.[54] Arne Klungland, John Arne Dahl. Dynamic RNA modifications in disease[J]. Curr Opin Genet Dev, 2014, 26: 47-52.[55] Kevin J Basile, Matthew E Johnson, Xia Qiang-hua, et al. Genetic susceptibility to type 2 diabetes and obesity: follow-up of findings from genome-wide association studies[J]. Int J Endocrinol, 2014, doi: 10.1155/2014/769671. [56] He Rong-qiao. The research window of Alzheimer’s disease should be brought forward[J]. Prog Biochem Biophys, 2012, 39(8): 692-697.[57] Yang Mei-feng, Lu Jing, Miao Jun-ye, et al. Alzheimer's disease and methanol toxicity (part 1): chronic methanol feeding led to memory impairments and tau hyperphosphorylation in mice[J]. J Alzheimers Dis, 2014, 41(4):1117-11129.[58] Yang Mei-feng, Miao Jun-ye, Joshua Rizak, et al. Alzheimer's disease and methanol toxicity (part 2): lessons from four rhesus macaques (Macaca mulatta) chronically fed methanol[J]. J Alzheimers Dis, 2014, 41(4): 1131-1147.[59] Jia Jian-ping, Wang Fen, Yuan Quan, et al. Progresses on genetics of predementia phase of Alzheimer’s disease[J]. Prog Biochem Biophys, 2012, 39(8): 698-702.[60] Cong Lin, Jia Jian-ping. Promoter polymorphisms which regulate ADAM9 transcription are protective against sporadic Alzheimer's disease[J]. Neurobiol Aging, 2011, 32(1): 54-62.[61] He Rong-qiao, Lu Jing, Miao Jun-ye. Formaldehyde stress[J]. Sci China Life Sci, 2010, 53(12): 1399-1404.[62] Jia Wei Zhou. Recent progress in neurodegenerative disorder research in China[J]. Sci China Life Sci, 2010, 53(3): 348-355.[63] Wang Tan, Sun Xiu-lian. Molecular regulation of BACE1 and its function at the early onset of Alzheimer’s disease[J]. Prog Biochem Biophys, 2012, 39(8): 709-714.[64] Lin Lu, Xu Shu-jun, Wang Qin-wen. The relationship between astrocyte-mediated metabolism of β-amyloid protein and pathogenesis of the early stages of Alzheimer’s disease[J]. Prog Biochem Biophys, 2012, 39(8): 715-720.[65] Hua Qian, Ding Hai-min, Liang Mi. Progress on Aβ-targeted therapeutic strategies for Alzheimer’s disease[J]. Prog Biochem Biophys, 2012, 39(8): 734-740.[66] Jia Jian-ping, Wang Fen, Yuan Quan, et al. Progresses on genetics of predementia phase of Alzheimer's disease[J]. Prog Biochem Biophys, 2012, 39(8): 698-702.[67] Liu Yan-ying, Qiang Min, Wei Yan, et al. A novel molecular mechanism for nitrated-synuclein-induced cell death[J]. J Mol Cell Biol, 2011, 3(4): 239-249.[68] Wang Jian-zhi, Tian Qin. Molecular mechanisms underlie Alzheimer-like Tau hyperphosphorylation and neurodegeneration[J]. Prog Biochem Biophys, 2012, 39(8): 771-777.[69] Tam H Nguyen, Qiu Xu-feng, Sun Jian-yuan, et al. Bulk endocytosis at neuronal synapses[J]. Sci China Life Sci, 2014, 57(4): 378-383.[70] Chen Xiang-jun, Xu Huan, Cooper Helen M, et al. Cytoplasmic dynein: a key player in neurodegenerative and neurodevelopmental diseases[J]. Sci China Life Sci, 2014, 57(4): 372-377.[71] Qiang Min, Xu Ya-jie, Lu Ying-ge, et al. Autofluorescence of MDA-modified proteins as an in vitro and in vivo probe in oxidative stress analysis[J]. Protein Cell, 2014, 5(6): 484-487.[72] Zhao Bao-lu, Wan Li. Metal metabolic homeostasis disruption and early initiation of mechanism for Alzheimer’s disease[J]. Prog Biochem Biophys, 2012, 39(8):771-777.[73] Xu Ya-jie, Qiang Min, Zhang Jin-ling, et al. Reactive carbonyl compounds (RCCs) cause aggregation and dysfunction of fibrinogen[J]. Protein Cell, 2012, 3(8): 627-640.[74] Chanel J Taylor, Perry F Bartlett. The role of the N-methyl-D-aspartate receptor in the proliferation of adult hippocampal neural stem and precursor cells[J]. Sci China Life Sci, 2014, 57(4): 403-411.[75] Zhou Hua-lin, Marie Mangelsdorf, Liu Jiang-hong, et al. RNA-binding proteins in neurological diseases[J]. Sci China Life Sci, 2014, 57(4): 432-444.[76] 李婷, 强敏, 赫荣乔. 慢性脱水与老年认知损伤及饮水干预[J]. 神经药理学报, 2012, 2(3): 43-51.[77] Lu H M, He R Q, Guo A K. From bionics to neuroscience[J]. Prog Biochem Biophys, 2014, 41(10): 683-689. |
[1] | XU Guang-yin. Epigenetic Regulations and Chronic Pain Hypersensitivity [J]. Acta Neuropharmacologica, 2018, 8(5): 94-95. |
[2] | SUN Yan-yun,WANG Meng-wei,JIN Xin-chu. Chronic Nicotine Treatment Alleviates Schizophrenia-Induced Memory Deficit through Regulating Pdlim5 and CRTC1 in Mice [J]. Acta Neuropharmacologica, 2018, 8(4): 6-7. |
[3] | BAI Yan-chang,JIA Yan-li,WANG Jian-hua. Value of Neuroimaging in Vascular Cognitive Impairment [J]. Acta Neuropharmacologica, 2017, 7(6): 1-6. |
[4] | WANG Lun-zheng, XIE Wen-juan, TANG Tie-Shan. Neural Stem Cells, Adult Neurogenesis and Cell Therapy for Neurodegenerative Diseases [J]. Acta Neuropharmacologica, 2015, 5(3): 46-64. |
[5] | LI Ting, QIANG Min, HE Rong-qiao. Chronic Dehydration and Regularly Drinking Water to Mitigate Age-Related Cognitive Impairment [J]. Acta Neuropharmacologica, 2012, 2(3): 43-51. |
[6] | ZHANG Ting-ting,LIU Li-ping,JIANG Li-ying,HU Wei,LONG Yan,HONG Hao. Rosiglitazone Improves Cognitive Impairment in Streptozotocin-induced Diabetic Mice and its Mechanisms [J]. Acta Neuropharmacologica, 2011, 1(2): 1-6. |
[7] | JIN Hui, LIU Li-Feng, LIANG Lei, DENG Wei-Ping, LIU Jian-Wen. Research on the block of cell cycle and apoptosis induction on glioma cell line U251 of a novel HDAC inhibitor named DWP0016 [J]. Acta Neuropharmacologica, 2011, 1(1): 38-45. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||