神经药理学报 ›› 2023, Vol. 13 ›› Issue (3): 31-.DOI: 10.3969/j.issn.2095-1396.2023.03.005

• 研究论文 • 上一篇    下一篇

基于网络药理学预测桃仁治疗帕金森的靶点

白景茹,尤斯涵,殷宏艳,杨宋蕊 ,郭春燕   

  1. 河北北方学院药学院,河北省神经药理学重点实验室,张家口,075000,中国
  • 出版日期:2023-06-26 发布日期:2024-05-09
  • 通讯作者: 郭春燕,教授,硕士生导师;研究方向:体内药物分析和靶向药物分析;E-mail:guochy0311@163.com
  • 作者简介:白景茹,研究方向:网络药理学;E-mail: 3130173332@qq.com

Predicting the Target of Peach Kernel in the Treatment of Parkinson's Disease Based on Network Pharmacology

BAI Jing-ru, YOU Si-han, YIN Hong-yan, YANG Song-rui, GUO Chun-yan   

  1. Department of Pharmacy, Hebei North University, Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, 075000, China
  • Online:2023-06-26 Published:2024-05-09
  • Contact: 郭春燕,教授,硕士生导师;研究方向:体内药物分析和靶向药物分析;E-mail:guochy0311@163.com
  • About author:白景茹,研究方向:网络药理学;E-mail: 3130173332@qq.com

摘要:

目的:通过网络药理学预测桃仁治疗帕金森(Parkinson's disease,PD)的靶点。方法:通过TCMSP数据库(https://tcmspw.com/tcmspsearch.php)检索桃仁的化学成分,通过SwissTargetPrediction数据库(http://www.swisstargetprediction.ch/)预测桃仁的作用靶点。通过TTD数据库(http://db.idrblab.net/ttd/)和Drugbank数据库(https://www.drugbank.ca/)搜集PD相应的靶点,从中获得桃仁和PD靶点交集,进行蛋白-蛋白相互作用网络分析,从中得到关联度高的靶点。通过DAVID数据库(https://david.ncifcrf.gov/tools.jsp)进行GO富集分析和KEGG通路分析。结果:从中药桃仁中筛选出23个化合物成分以及274个作用靶点,与PD的155个靶点取交集得到31个共同靶点。将共同靶点进行蛋白-蛋白相互作用网络分析得到有205个节点,732条边,28个PD-桃仁相关靶点。经拓扑学指标筛选得到由92个节点,426条边组成的拓扑蛋白蛋白相互作用网络,其中关联度高的靶点有22个。GO注释得到105条生物过程,30条细胞组分参与以及31条分子功能的信息。KEGG分析有33条通路。结论:网络药理学直观的显示了桃仁治疗PD的多成分、多靶点、多通路,为后续桃仁治疗PD提供了理论基础。

关键词: 帕金森, 桃仁, 网络药理学

Abstract:

Objective: To predict the target of peach kernels in the treatment of Parkinson's Disease (PD) through network pharmacology. Methods: The chemical composition of peach kernels was retrieved through the TCMSP database (https://tcmspw.com/tcmspsearch.php), and the targets of peach kernels were predicted through the SwissTargetPrediction database (http://www.swisstargetprediction.ch/). Collect PD corresponding targets through TTD database (http://db.idrblab.net/ttd/) and Drugbank database (https://www.drugbank.ca/), obtain the intersection of peach kernels and PD targets, and perform protein -Protein interaction network analysis, from which highly related targets can be obtained. GO enrichment analysis and KEGG pathway analysis were performed through the DAVID database (https://david.ncifcrf.gov/tools.jsp). Results: 23 compound components and 274 targets were screened from the traditional Chinese medicine peach kernels, and 31 common targets were obtained by intersecting with the 155 targets of PD. The protein-protein interaction network analysis of the common target has 205 nodes, 732 edges, and 28 PD-peach kernel related targets. A topological protein-protein interaction network consisting of 92 nodes and 426 edges was screened by topological indicators, of which 22 targets were highly correlated. GO annotations yielded 105 biological processes, 30 cellular components involved, and 31 molecular functions. KEGG analysis has 33 pathways. Conclusion: Network pharmacology intuitively shows the multiple components, multiple targets, and multiple pathways of peach kernels in the treatment of PD, which provides a theoretical basis for the follow-up peach kernels to treat PD.

Key words: Parkinson's disease, peach kernel, network pharmacology