神经药理学报 ›› 2016, Vol. 6 ›› Issue (3): 24-31.DOI: 10.3969/j.issn.2095-396.2016.03.004
冯慧利,王蓬文
出版日期:
2016-06-26
发布日期:
2016-05-10
通讯作者:
王蓬文,博士,教授,博士生导师;研究方向:神经变性病的中医药防治;Tel:+86-010-84013195,E-mail:pw_wang@163.com
作者简介:
冯慧利,女,在读博士生;研究方向:神经变性病的中医药防治;E-mail:fenghuili1213@163.com
基金资助:
国家自然基金面上资助项目(No. 81573927),北京中医药大学研究生资助项目(No.2016-JYB-XS143)
FENG Hui-li ,WANG Peng-wen
Online:
2016-06-26
Published:
2016-05-10
Contact:
王蓬文,博士,教授,博士生导师;研究方向:神经变性病的中医药防治;Tel:+86-010-84013195,E-mail:pw_wang@163.com
About author:
冯慧利,女,在读博士生;研究方向:神经变性病的中医药防治;E-mail:fenghuili1213@163.com
Supported by:
国家自然基金面上资助项目(No. 81573927),北京中医药大学研究生资助项目(No.2016-JYB-XS143)
摘要: 阿尔茨海默病(Alzheimer’ disease,AD)是老年痴呆主要的类型,约占痴呆病例的 50%~70%。随着人口老龄化的出现,AD 的发病率及其严重性日益增加,给家庭、社会带来巨大的经济负担,引起了各国政府和国内外学者的高度重视。正电子发射型断层成像技术(positron emission tomography,PET)可以利用不同示踪剂进行显像,准确监测活体神经元活动与脑组织中特定的生化过程。与其他影像学技术相比,PET 对AD 的早期诊断特异性和灵敏性较高,因此针对 AD 开发更多有价值的 PET 示踪剂,对 PET 在 AD 的应用至关重要。该文概括 PET 在 AD 病理、诊断、疗效判定中的应用,主要关注 PET 对 AD 早期诊断中作用及其 进展。
冯慧利,王蓬文. PET 显像技术在阿尔茨海默病中的应用进展[J]. 神经药理学报, 2016, 6(3): 24-31.
FENG Hui-li,WANG Peng-wen . [J]. Acta Neuropharmacologica, 2016, 6(3): 24-31.
[1]Alzheimer's Disease International. World Alzheimer Report 2015[J]. The Global Economic Impact of Dementia, 2015.[2]Ph Scheltens, Kaj Blennow, Monique M B Breteler. Alzheimer's disease[J]. Lancet, 2016, 388 (10043): 505-517.[3]Givoanni B Frisoni, Nick C Fox, Clifford R Jack, et al. The clinical use of structural MRI in Alzheimer disease[J].Nat Rev Neurol, 2010, 6(2): 67-77.[4]John A Hardy, Gerald A Higgins. Alzheimer's disease: the amyloid cascade hypothesis[J]. Science, 1992, 256(5054): 184-185.[5]Sanjay W Pimplikar, Ralph Nixon, Nixon K Robakis, et al. Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis[J]. J Neurosci, 2010, 30(45): 14946-14954.[6]Scheuner D E C, Christopher B Eckman, Malene Jensen, et al. Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease[J]. Nat Med, 1996, 2(8): 864-870.[7]Eric Karran, Marc Mercken, Bart De Strooper. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics[J]. Nat Rev Drug Discov, 2011, 10(9): 698-712.[8]Guy M McKhann, David S Knopman, Howard Chertkow, et al. The diagnosis of dementia due to Alzheimer's disease:recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease[J]. Alzheimers Dement, 2011, 7(3): 263-269.[9]Lon S Schneider, Francesca Mangialasche, Niels Adreasen, et al. Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014[J]. J Intern Med, 2014, 275(3): 251-283.[10]Jeffrey L Cummings, Travis Morstorf, Zhong Kate. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures[J]. Alzheimers Res Ther, 2014, 6(4): 37.[11]Lon S Schneider, Mary Sano. Current Alzheimer’s disease clinical trials: methods and placebo outcomes[J]. Alzheimers Dement, 2009, 5(5): 388-397. [12]Stephen Salloway, Reisa Sperling, Nick C Fox, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease[J]. N Engl J Med, 2014, 370(4): 322-333.[13]Rachelle S Doody, Ronald G Thomas, Martin Farlow, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease[J]. N Engl J Med, 2014, 370(4): 311-321.[14]Atri A, Colding-Jorgensen E. A 5HT-6 antagonist in advanced development for the treatment of mild-moderate Alzheimer’s disease[J]. J Prevent Alzheimer Dis, 2014, 3: 220.[15]Rachelle S Doody, Rema Raman, Martin Farlow, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease[J]. N Engl J Med, 2013, 369(4): 341-350.[16]Andrew Lockhart. Imaging Alzheimer's disease pathology: one target, many ligands[J]. Drug Discov Today, 2006, 11(23-24): 1093-1099. [17]Nobuyuki Okamura, Takahiro Suemoto, Hiroshi Shimadzu, et al. Styrylbenzoxazole derivatives for in vivo imaging of amyloid plaques in the brain[J]. J Neurosci, 2004, 24(10): 2535-2541. [18]Jun Maeda, Ji Bin, Irie Toshiaki, et al. Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer’s disease enabled by positron emission tomography[J]. J Neurosci, 2007, 27(41): 10957-10968.[19]Karl Herholz, Klaus Ebmeier. Clinical amyloid imaging in Alzheimer’s disease[J]. Lancet Neurol, 2011, 10(7): 667-670.[20]Christopher M Clark, Michael J Pontecorvo, Thomas G Beach, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-β plaques: a prospective cohort study[J].Lancet Neurol, 2012, 11(8) : 669-78.[21]Natalie L Marchant, Bruce R Reed, Charles S DeCarli, et al. Cerebrovascular disease, beta-amyloid, and cognition in aging[J]. Neurobiol Aging, 2012, 33(5): 1006.[22]Rik Ossenkoppele, Willemijn J Jansen, Gil D Rabinovici, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis[J].JAMA, 2015, 313(19): 1939-1949.[23]Willemijn J Jansen, Rik Ossenkoppele, Dirk L Knol, et al. Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis[J]. JAMA, 2015, 313(19): 1924-1938.[24]Marie Sarazin, Julien Lagarde, Michel Bottlaender. Distinct tau PET imaging patterns in typical and atypical Alzheimer’s disease[J]. Brain, 2016, 139(Pt 5): 1321-1324.[25]Dietmar Thal, Rik Vandenberghe. Monitoring the progression of Alzheimer’s disease with tau-PET[J]. Brain, 2016, 139(Pt 5): 1318-1320.[26]Victor L Villemagne, Michelle T Fodero-Tavoletti, Colin L Masters, et al. Tau imaging: early progress and future directions[J]. Lancet Neurol, 2015, 14(1): 114-124.[27]Ryuichi Harada, Nobuyuki Okamura, Shozo Furumoto, et al. [18F]THK-5117 PET for assessing neurofibrillary pathology in Alzheimer’s disease[J]. Eur J Nucl Med Mol Imaging, 2015, 42(7): 1052-1061.[28]Ryuichi Harada, Nobuyuki Okamura, Shozo Furumoto, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease[J]. J Nucl Med, 2016, 57(2): 208-214. [29]Dustin W Wooten, Nicolas Guehl, Eline E Verwer, et al. Pharmacokinetic evaluation of the tau PET radiotracer [18F]T807 ([18F]AV-1451) in human subjects[J]. J Nucl Med, 2017, 58(3): 484-491.[30]Marta Marquie, Marc D Normandin, Avery C Meltzer, et al. Pathological correlations of [F-18]-AV-1451 imaging in non-Alzheimer tauopathies[J]. Ann Neurol, 2017, 81(1): 117-128.[31]Masahiro Maruyama, Hitoshi Shimada, Tetsuya Suhara, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls[J]. Neuron, 2013, 79(6): 1094-1108.[32]Rik Ossenkoppele, Daniel R Schonhaut, Suzanne Baker, et al. Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy[J]. Ann Neurol, 2015, 77(2): 338-342.[33] John C Morris. Dementia update 2005[J]. Alzheimer Dis Assoc Disord, 2005, 19 (2):100-117.[34]M J de Leon, Ajax George, Steven H Ferris, et al. Regional correlation of PET and CT in senile dementia of the Alzheimer type[J]. AJNR Am J Neuroradiol, 1983, 4(3): 553-556.[35] Richard Wurtman. Biomarkers in the diagnosis and management of Alzheimer’s disease[J]. Metabolism, 2015, 64(3 Suppl 1): S47-50.[36] Samuel T Henderson. High carbohydrate diets and Alzheimer's disease[J]. Med Hypotheses, 2004, 62(5): 689-700.[37] Eric M Reiman, Chen Ke-wei, Gene E Alexander, et al. Functional brain abnormalities in young adults at genetic risk for late-onsetczheimer's dementia[J]. Proc Natl Acad Sci U S A, 2004, 101 (1): 284-289.[38] Daniela Perani, Pasquale Anthony Della Rosa, Chiara Cerami, et al. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting[J]. Neuroimage Clin, 2014, 6: 445- 454.[39]Kyle B Womack, Ramon Diaz-Arrastia, Howard J Aizenstein, et al. Temporoparietal hypometabolism in frontotemporal lobar degeneration and associated imaging diagnostic errors[J]. Arch Neurol, 2011, 68(3): 329-337.[40] Jagust W J, Seab J P, Huesman R H, et al. Diminished glucose transport in Alzheimer’s disease: Dynamic pet studies[J]. J Cereb Blood Flow Metab, 1991, 11(2): 323-330. [41] Piert M, Koeppe RA, Giordani B, et al. Diminished glucose transport and phosphorylation in Alzheimer’s disease determined by dynamic FDG-PET[J]. J Nucl Med,1996,37 (2):201-208.[42]冯慧利, 高凯, 魏鹏, 等. MicroPET观察姜黄素对9月龄AD小鼠脑葡萄糖代谢的影响[J]. 中国实验动物学报, 2013, 21(4): 38-41. [43]Rachel M Nicholson, Yael Kusne, Lee A Nowak, et al. Regional cerebral glucose uptake in the 3×tg model of alzheimer’s disease highlights common regional vulnerability across ad mouse models[J]. Brain Res, 2010, 1347: 179-185.[44] Roman Roy, Flavia Niccolini, Gennaro Pagano, et al. Cholinergic imaging in dementia spectrum disorders[J]. Eur J Nucl Med Mol Imaging, 2016, 43(7): 1376-1386.[45] Kuhl D E, Koeppe R A, Minoshima S, et al. In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease[J]. Neurology, 1999, 52(4): 691-699.[46] Herholz K, Weisenbach S, Zu¨ndorf G, et al. In vivo study of acetylcholine esterase in basal forebrain,amygdala, and cortex in mild to moderate Alzheimer disease[J]. Neuroimage, 2004, 21(1): 136-143.[47] Henry N Wagner. Nuclear medicine for all the world--from molecular imaging to molecular medicine[J]. J Korean Med Sci, 2007, 22(4): 595-597.[48] Susanne G Mueller, Michael W Weiner, Leon J Thal, et al. Ways toward an early diagnosis in Alzheimer's disease: the Alzheimer's Disease Neuroimaging Initiative (ADNI)[J]. Alzheimers Dement, 2005, 1(1): 55-66.[49] Herholz K, Salmon E, Perani D, et al. Discrimination between Alzhei-mer dementia and controls by automated analysis of multicenter FDG PET[J]. Neuroimage, 2002, 17(1): 302-316.[50] Chételat G, Desgranges B, de la Sayette V, et al. Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer's disease[J]? Neurology, 2003, 60(8): 1374-1377.[51]Gary W Small, Susan Y Bookheimer, Paul M Thompson, et al. Current and future uses of neuroimaging for cognitively impaired patients[J].Lancet Neurol, 2008, 7(2): 161-172. [52]李德鹏, 马云川, 苏玉盛, 等. 老年性痴呆与血管性痴呆的18F-FDG PET显像分析[J]. 中风与神经疾病杂志, 2001, 18(4): 213-214.[53]Nacer Kerrouche, Karl Herholz, Renee Mielke, et al. 18FDG PET in vascular dementia: differentiation from Alzheimer's disease using voxel-based multivariate analysis[J]. J Cereb Blood Flow Metab, 2006, 26(9): 1213-1221.[54]Yuan Y, Gu Z X, Wei W S. Fluorodeoxyglucosepositron-emission tomography, single-photon emission tomography, and structural MR imaging for prediction of rapid conversion to Alzheimer disease in patients with mild cognitive impairment:a meta-analysis[J]. AJNR Am J Neuroradiol, 2009, 30(2): 404-410.[55]Zhang S, Han D, Tan X, et al. Diagnostic accuracy of 18F-FDG and 11C-PIB-PET for prediction of shortterm conversion to Alzheimer’s disease in subjects with mild cognitive impairment[J]. Int J Clin Pract, 2012, 66(2):185-198.[56]Jennifer L Shaffer, Jeffrey R Petrella, Forrest C Sheldon, et al. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers[J]. Radiology, 2013, 266(2): 583-591.[57]Daniel H S Silverman, Gary W Small, Carol Y Chang, et al. Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome[J]. JAMA, 2001, 286(17): 2120-2127.[58]王世真, 朴日阳, 张春. 分子核医学(第二版) [M]. 中国协和医科大学出版社, 2004: 392-396.[59]Kuhl D E, Minoshima S, Frey K A, et al. Limited donepezil inhibition of acetylcholinesterase measured with positron emission tomography in living Alzheimer cerebral cortex[J]. Ann Neurol, 2000, 48(3): 391-395.[60]Bohnen N I, Kaufer D I, Hendrickson R, et al. Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease[J]. J Neurol Neurosurg Psychiatry, 2005, 76(3): 315-319.[61]Kadir A, Darreh-Shori T, Almkvist O, et al. PET imaging of the in vivo brain acetylcholinesterase activity and nicotine binding in galantamine-treated patients with AD[J]. Neurobiol Aging, 2008, 29(8): 1204-1217. |
[1] | 谢彬, 黄志源, 林多朵, 杨福龙, 谢奕彬. 针药结合干预阿尔茨海默病抑郁症状效果分析[J]. 神经药理学报, 2020, 10(5): 5-8. |
[2] | 赵雨薇, 甄艳杰, 戴月英, 沈丽霞. 槲皮素对阿尔茨海默症神经保护作用研究[J]. 神经药理学报, 2020, 10(5): 55-64. |
[3] | 海吉涛, 罗焕敏. 病原微生物与阿尔茨海默病相关性研究进展[J]. 神经药理学报, 2020, 10(4): 58-64. |
[4] | 杨旭华, 杜爽, 沈丽霞, 郝军荣. 阿尔茨海默病的药物治疗研究进展[J]. 神经药理学报, 2020, 10(3): 47-53. |
[5] | 甄艳杰, 郭童林, 赵雨薇, 沈丽霞. 植物雌激素介导线粒体途径对阿尔茨海默病神经保护作用的研究进展[J]. 神经药理学报, 2020, 10(1): 40-46. |
[6] | 杨琳,艾静. 脑源雌激素在阿尔茨海默病中的作用研究进展[J]. 神经药理学报, 2019, 9(5): 50-64. |
[7] | 张帅,艾静. 谷氨酸功能异常与阿尔茨海默病[J]. 神经药理学报, 2018, 8(6): 9-20. |
[8] | SHEN li-xia1,LIU Liang-liang1,ZHANG Ming1,LIU Yang1,ZHANG Dan-shen 2*. Research of Quercetin’s Estrogen-Like Action on Central Nervous System and Its Mechanisms[J]. 神经药理学报, 2018, 8(4): 23-25. |
[9] | 黄蕊,杨翠翠,张兰. 二苯乙烯苷对APP/PS1 双转基因小鼠学习记忆及突触可塑性的影响[J]. 神经药理学报, 2018, 8(2): 31-31. |
[10] | 雷曦,王健辉,程肖蕊,张小锐,刘港,周文霞,张永祥. 基于快速老化模型小鼠SAMP8 的CA-30 抗阿尔茨海默病的作用研究[J]. 神经药理学报, 2018, 8(2): 50-50. |
[11] | 王健辉,程肖蕊,张小锐,刘港,周文霞,张永祥. 药物组合吲哚美辛与阿托伐他汀对阿尔茨海默病的治疗作用研究[J]. 神经药理学报, 2018, 8(2): 52-52. |
[12] | 王静,程肖蕊,周文霞,张永祥. 快速老化模型小鼠海马囊泡谷氨酸转运体表达与兴奋性毒性关系的研究[J]. 神经药理学报, 2018, 8(2): 53-53. |
[13] | 张林,蒋宁,周文霞,张永祥. 疾病特异性诱导性多功能干细胞AD 模型建立[J]. 神经药理学报, 2018, 8(2): 54-54. |
[14] | 郭鹏,张巍. 阿尔茨海默病患者睡眠障碍及其与认知障碍关系的研究[J]. 神经药理学报, 2018, 8(2): 61-61. |
[15] | 连腾宏,李少武,余秋瑾,等. 阿尔茨海默病伴发嗅觉障碍的临床特点及静息态功能核磁共振成像的研究[J]. 神经药理学报, 2018, 8(2): 62-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||