神经药理学报 ›› 2015, Vol. 5 ›› Issue (4): 33-42.
刘雅妮,张会然,赵晨,黄东阳,杜雨薇,张海林
出版日期:
2015-08-26
发布日期:
2016-03-03
通讯作者:
张海林,男,博士,教授,博士生导师;研究方向:分子药理学;Tel: +86-0311-86265562, E-mail: zhanghl@hebmu.edu.cn
作者简介:
刘雅妮,女,博士,助理研究员;研究方向:神经生物学;Tel:+86-010-55498798, E-mail: liu-yani@live.cn
基金资助:
国家自然科学基金资助项目(No. 31270882),国家重点基础研究发展计划(973计划)(2013CB531302)
LIU Ya-ni, ZHANG Hui-ran, ZHAO Chen, HUANG Dong-yang, DU Yu-wei, ZHANG Hai-lin
Online:
2015-08-26
Published:
2016-03-03
Contact:
张海林,男,博士,教授,博士生导师;研究方向:分子药理学;Tel: +86-0311-86265562, E-mail: zhanghl@hebmu.edu.cn
About author:
刘雅妮,女,博士,助理研究员;研究方向:神经生物学;Tel:+86-010-55498798, E-mail: liu-yani@live.cn
Supported by:
国家自然科学基金资助项目(No. 31270882),国家重点基础研究发展计划(973计划)(2013CB531302)
摘要: 氯离子是体内最重要最丰富的阴离子, 它进出细胞的过程, 除了与氯离子 相关的一些转运体主动转运外, 经过阴离子通道进行转运是重要方式之一。氯离子通道组织分布广泛,参与了众多的生理过程:包括细胞体积的调节、膜电位的稳定性调节、信号转导以及跨上皮运输等。文章重点综述了钙激活氯通道和容积调节氯通道的生理功能及分子基础,简单介绍了电压门控氯通道、囊性纤维跨膜电导转运体及配体门控氯通道。
刘雅妮,张会然,赵晨,黄东阳,杜雨薇,张海林. 氯离子通道研究进展[J]. 神经药理学报, 2015, 5(4): 33-42.
LIU Ya-ni, ZHANG Hui-ran, ZHAO Chen, HUANG Dong-yang, DU Yu-wei, ZHANG Hai-lin. The Progress on Studies of Chloride Channels[J]. Acta Neuropharmacologica, 2015, 5(4): 33-42.
[1] Miledi R. A calcium-dependent transient outward current in Xenopus laevis oocytes[J]. Proc R Soc Lond B Biol Sci, 1982, 215(1201):491-497.[2] Criss Hartzell, IIva Putzier, Jorge Arreola. Calcium-activated chloride channels[J]. Annu Rev Physiol, 2005, 67(1):719-758.[3] James E Melvin, David Yule, Trevor Shuttleworth, et al. Regulation of fluid and electrolyte secretion in salivary gland acinar cells[J]. Annu Rev Physiol, 2005, 67:445-469.[4] Jim Berg, Huang he Yang, Jan Lily Yeh. Ca2+-activated Cl- channels at a glance[J]. J Cell Sci, 2012, 125(Pt 6):1367-1371.[5] Kleene S J, Gesteland R C. Calcium-activated chloride conductance in frog olfactory cilia[J]. J Neurosci, 1991, 11(11):3624-3629.[6] Graeme Lowe, Gold G H. Contribution of the ciliary cyclic nucleotide-gated conductance to olfactory transduction in the salamander[J]. J Physiol, 1993, 462(1):175-196.[7] Stuart Firestein, Shepherd G M. Interaction of anionic and cationic currents leads to a voltage dependence in the odor response of olfactory receptor neurons[J]. J Neurophysiol, 1995, 73(2):562-567.[8] Detlev Schild, Diego Restrepo. Transduction mechanisms in vertebrate olfactory receptor cells[J]. Physiol Rev, 1998, 78(2):429-466.[9] Stapleton S R, Scott R H, Bell B A. Effects of metabolic blockers on Ca(2+)-dependent currents in cultured sensory neurones from neonatal rats[J]. Br J Pharmacol, 1994, 111(1):57-64.[10] Kevin P M Currie, John Francis Wootton, Roderick H Scott. Activation of Ca(2+)-dependent Cl- currents in cultured rat sensory neurones by flash photolysis of DM-nitrophen[J]. J Physiol, 1995, 482 ( Pt 2):291-307.[11] William Large, Wang Q. Characteristics and physiological role of the Ca(2+)-activated Cl- conductance in smooth muscle[J]. Am J Physiol, 1996, 271(2 Pt 1):C435-454.[12] Bao Rong-feng, Lawrence M Lifshitz, Richard A Tuft, et al. A close association of RyRs with highly dense clusters of Ca2+-activated Cl- channels underlies the activation of STICs by Ca2+ sparks in mouse airway smooth muscle[J]. J Gen Physiol, 2008, 132(1):145-160.[13] Sonia A Cunningham, Mouhaned S Awayda, James K Bubien, et al. Cloning of an epithelial chloride channel from bovine trachea[J]. J Biol Chem, 1995, 270(52):31016-31026.[14] Adele Gibson, Alan P Lewis, Karen Affleck, et al. hCLCA1 and mCLCA3 are secreted non-integral membrane proteins and therefore are not ion channels[J]. J Biol Chem, 2005, 280(29):27205-27212.[15] Anand C Patel, Tom J Brett, Michael J Holtzman. The role of CLCA proteins in inflammatory airway disease[J]. Annu Rev Physiol, 2009, 71:425-449.[16] Huang Ping, Liu Jie, Di Anke, et al. Regulation of human CLC-3 channels by multifunctional Ca2+/calmodulin-dependent protein kinase[J]. J Biol Chem, 2001, 276(23):20093-20100.[17] Robinson N C, Huang P, Kaetzel M A, et al. Identification of an N-terminal amino acid of the CLC-3 chloride channel critical in phosphorylation-dependent activation of a CaMKII-activated chloride current[J]. J Physiol, 2004, 556(Pt 2):353-368.[18] Jorge Arreola, Ted Begenisich, Keith Nehrke, et al. Secretion and cell volume regulation by salivary acinar cells from mice lacking expression of the Clcn3 Cl- channel gene[J]. J Physiol, 2002, 545(Pt 1):207-216.[19] Qu Zhi-qiang, Raymond W Wei, Wesley Mann, et al. Two bestrophins cloned from Xenopus laevis oocytes express Ca(2+)-activated Cl(-) currents[J]. J Biol Chem, 2003, 278(49):49563-49572.[20] Sun Hui, Takashi Tsunenari, King-Wai Yau, et al. The vitelliform macular dystrophy protein defines a new family of chloride channels[J]. Proc Natl Acad Sci USA, 2002, 99(6):4008-4013.[21] Loretta Ferrera, Antonella Caputo, Luis J V Galietta. TMEM16A protein: a new identity for Ca(2+)-dependent Cl channels[J]. Physiology (Bethesda), 2010, 25(6):357-363.[22] Rene Barro-Soria, Rainer Schreiber, Karl Kunzelmann. Bestrophin 1 and 2 are components of the Ca(2+) activated Cl(-) conductance in mouse airways[J]. Biochim Biophys Acta, 2008, 1783(10):1993-2000.[23] Yu Kuai, Cui Yuan-yuan, Criss Hartzell. The bestrophin mutation A243V, linked to adult-onset vitelliform macular dystrophy, impairs its chloride channel function[J]. Invest Ophthalmol Vis Sci, 2006, 47(11):4956-4961.[24] Alan D Marmorstein, Lihua Y Marmorstein, Mary Rayborn, et al. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium[J]. Proc Natl Acad Sci USA, 2000, 97(23):12758-12763.[25] Karl Kunzelmann. TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca(2+) and cell volume[J]. Trends Biochem Sci, 2015, 40(9):535-543.[26] Veronica Kane Dickson, Leanne Pedi, Stephen B Long. Structure and insights into the function of a Ca2+-activated Cl- channel[J]. Nature, 2014, 516(7530):213-218.[27] Young Duk Yang, Hawon Cho, Jae Yeon Koo, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance[J]. Nature, 2008, 455(7217):1210-1215.[28] Bjorn Christian Schroeder, Cheng Tong, Yuh Nung Jan, et al. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit[J]. Cell, 2008, 134(6):1019-1029.[29] Antonella Caputo, Emanuela Caci, Loretta Ferrera, et al. TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity[J]. Science, 2008, 322(5901):590-594.[30] Mattia Malvezzi, Madhavan Chalat, Radmila Janjusevic, et al. Ca2+-dependent phospholipid scrambling by a reconstituted TMEM16 ion channel[J]. Nat Commun, 2013, 4:2367.[31] Nicoletta Pedemonte, Luis J Galietta. Structure and function of TMEM16 proteins (anoctamins) [J]. Physiol Rev, 2014, 94(2):419-459.[32] Simone Pifferi, Michele Dibattista, Anna Menini. TMEM16B induces chloride currents activated by calcium in mammalian cells[J]. Pflugers Arch, 2009, 458(6):1023-1038.[33] Claudia Sagheddu, Anna Boccaccio, Michele Dibattista, et al. Calcium concentration jumps reveal dynamic ion selectivity of calcium-activated chloride currents in mouse olfactory sensory neurons and TMEM16b-transfected HEK 293T cells[J]. J Physiol, 2010, 588(Pt 21):4189-4204.[34] John T Sheridan, Erin N Worthington, Yu Kuai, et al. Characterization of the oligomeric structure of the Ca(2+)-activated Cl- channel Ano1/TMEM16A[J]. J Biol Chem, 2010, 286(2):1381-1388.[35] Ghada Fallah, Thomas Romer, Silvia Detro-Dassen, et al. TMEM16A(a)/anoctamin-1 shares a homodimeric architecture with CLC chloride channels[J]. Mol Cell Proteomics, 2010, 10(2):M110 004697.[36] Janine D Brunner, Novandy K Lim, Stephan Schenck, et al. X-ray structure of a calcium-activated TMEM16 lipid scramblase[J]. Nature, 2014, 516(7530):207-212.[37] Xiao Qing-huan, Cui Yuan-yuan. Acidic amino acids in the first intracellular loop contribute to voltage- and calcium- dependent gating of anoctamin1/TMEM16A[J]. PLoS One, 2014, 9(6):e99376.[38] Jason Tien, Christian J Peters, Wong Xiu-ming, et al. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity[J]. Elife, 2014, 3(2):e02772.[39] Jin X, Shah S, Du X, et al. Activation of Ca(2+) -activated Cl(-) channel ANO1 by localized Ca(2+) signals[J]. J Physiol, 2016, 594(1):19-30.[40] Ricardo De La Fuente, Wan Namkung, Aaron Mills, et al. Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel[J]. Mol Pharmacol, 2008, 73(3):758-768.[41] Wan Namkung, Pauy-Wah Phuan, A S Verkman. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells[J]. J Biol Chem, 2010, 286(3):2365-2374.[42] Wan Namkung, Jay R Thiagarajah, Puay-Wah Phuan, et al. Inhibition of Ca2+-activated Cl- channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea[J]. FASEB J, 2010, 24(11):4178-4186.[43] Zhang Xuan, Du Xiao-na, Zhang Guo-hong, et al. Agonist-dependent potentiation of vanilloid receptor transient receptor potential vanilloid type 1 function by stilbene derivatives[J]. Mol Pharmacol, 2012, 81(5):689-700.[44] Soo-Jin Oh, Seok Jin Hwang, Jonghoon Jung, et al. MONNA, a potent and selective blocker for transmembrane protein with unknown function 16/anoctamin-1[J]. Mol Pharmacol, 2013, 84(5):726-735.[45] Liu Yani, Huiran Zhang, Huang Dong-yang, et al. Characterization of the effects of Cl channel modulators on TMEM16A and bestrophin-1 Ca activated Cl channels[J]. Pflugers Arch, 2015, 467(7):1417-1430.[46] Puma Kashyap, Pedro Julian Gomez-Pinilla, Maria J Pozo, et al. Immunoreactivity for Ano1 detects depletion of Kit-positive interstitial cells of Cajal in patients with slow transit constipation[J]. Neurogastroenterol Motil, 2011, 23(8):760-765.[47] Cuthbert A W. New horizons in the treatment of cystic fibrosis[J]. Br J Pharmacol, 2011, 163(1):173-183.[48] Robert B West, Christopher L Corless, Chen Xin, et al. The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status[J]. Am J Pathol, 2004, 165(1):107-113.[49] Ayoub C, Christine Wasylyk, Li Y, et al. ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines[J]. Br J Cancer, 2010, 103(5):715-726.[50] Else Kay Hoffmann, Ian Henry Lambert, Stine F Pedersen. Physiology of cell volume regulation in vertebrates[J]. Physiol Rev, 2009, 89(1):193-277.[51] Andres Stutzin, Else Kay Hoffmann. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis[J]. Acta Physiol (Oxf), 2006, 187(1-2):27-42.[52] Florian Lang, Gillian L Busch, Markus Ritter, et al. Functional significance of cell volume regulatory mechanisms[J]. Physiol Rev, 1998, 78(1):247-306.[53] Jean-Marc Dubois, Beatric Rouzaire-Dubois. The influence of cell volume changes on tumour cell proliferation[J]. Eur Biophys J, 2004, 33(3):227-232.[54] Else Kay Hoffmann, Niels Bjerre Holm, Ian Henry Lambert. Functions of volume-sensitive and calcium-activated chloride channels[J]. IUBMB Life, 2014, 66(4):257-267.[55] Jiang Bao-hong, Naoki Hattori, Liu Bing, et al. Suppression of cell proliferation with induction of p21 by Cl(-) channel blockers in human leukemic cells[J]. Eur J Pharmacol, 2004, 488(1-3):27-34.[56] Chen L X, Zhu L Y, Jacob T J, et al. Roles of volume-activated Cl- currents and regulatory volume decrease in the cell cycle and proliferation in nasopharyngeal carcinoma cells[J]. Cell Prolif, 2007, 40(2):253-267.[57] Li M, Wang B, Lin W. Cl-channel blockers inhibit cell proliferation and arrest the cell cycle of human ovarian cancer cells[J]. Eur J Gynaecol Oncol, 2008, 29(3):267-271.[58] Poulsen K A, Andersen E C, Hansen C F, et al. Deregulation of apoptotic volume decrease and ionic movements in multidrug-resistant tumor cells: role of chloride channels[J]. Am J Physiol Cell Physiol, 2010, 298(1):C14-25.[59] Florian Lang, Else Kay Hoffmann. Role of ion transport in control of apoptotic cell death[J]. Compr Physiol, 2012, 2(3):2037-2061.[60] Jacob Bak Holm, Ryszard Grygorczyk, Ian Henry Lambert. Volume-sensitive release of organic osmolytes in the human lung epithelial cell line A549: role of the 5-lipoxygenase[J]. Am J Physiol Cell Physiol, 2013, 305(1):C48-60.[61] Nilius B, Droogmans G. Amazing chloride channels: an overview[J]. Acta Physiol Scand, 2003, 177(2):119-147.[62] Miguel A Valverde, Mario Diaz, Francisco V Sepulveda, et al. Volume-regulated chloride channels associated with the human multidrug-resistance P-glycoprotein[J]. Nature, 1992, 355(6363):830-833.[63] Markus Paulmichl, Li Yi, Kevin Wickman, et al. New mammalian chloride channel identified by expression cloning[J]. Nature, 1992, 356(6366):238-241.[64] Ahmed N, Ramjeesingh M, Wong S, et al. Chloride channel activity of ClC-2 is modified by the actin cytoskeleton[J]. Biochem J, 2000, 352(Pt 3):789-794.[65] Zhou Jia-Guo, Ren Jing-Li, Qiu Qin-Ying, et al. Regulation of intracellular Cl- concentration through volume-regulated ClC-3 chloride channels in A10 vascular smooth muscle cells[J]. J Biol Chem, 2005, 280(8):7301-7308.[66] Johannes Furst, Claudia Bazzini, Martin Jakab, et al. Functional reconstitution of ICln in lipid bilayers[J]. Pflugers Arch, 2000, 440(1):100-115.[67] Duan Da-yue, Cathy Winter, Suzanne Cowley, et al. Molecular identification of a volume-regulated chloride channel[J]. Nature, 1997, 390(6658):417-421.[68] Karsten H Weylandt, MA Valverde, Muriel Nobles, et al. Human ClC-3 is not the swelling-activated chloride channel involved in cell volume regulation[J]. J Biol Chem, 2001, 276(20):17461-17467.[69] Rodolphe Fischmeister, H Criss Hartzell. Volume sensitivity of the bestrophin family of chloride channels[J]. J Physiol, 2005, 562(Pt 2):477-491.[70] Joana Almaca, Tian Yue-min, Fadi Aldehni, et al. TMEM16 proteins produce volume-regulated chloride currents that are reduced in mice lacking TMEM16A[J]. J Biol Chem, 2009, 284(42):28571-28578.[71] Andrea Milenkovic, Caroline Brandl, Vladimir M Milenkovic, et al. Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells[J]. Proc Natl Acad Sci USA, 2015, 112(20):E2630-2639.[72] Felizia K Voss, Florian Ullrich, Jonas Munch, et al. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC[J]. Science, 2014, 344(6184):634-638.[73] Qiu Zhao-zhu, Adrienne E Dubin, Jayanti Mathur, et al. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel[J]. Cell, 2014, 157(2):447-458.[74] Thomas Kjaer Klausen, Charlotte Hougaard, Else Kay Hoffmann, et al. Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin[J]. Am J Physiol Cell Physiol, 2006, 291(4):C757-771.[75] Shintaro Yamamoto, Kunihiko Ichishima, Tsuguhisa Ehara. Regulation of volume-regulated outwardly rectifying anion channels by phosphatidylinositol 3,4,5-trisphosphate in mouse ventricular cells[J]. Biomed Res, 2008, 29(6):307-315.[76] Takahiro Shimizu, Tomohiro Numata, Yasunobu Okada. A role of reactive oxygen species in apoptotic activation of volume-sensitive Cl(-) channel[J]. Proc Natl Acad Sci USA, 2004, 101(17):6770-6773.[77] Takahiro Shimizu, Elbert Lan Lee, Tomoko Ise, et al. Volume-sensitive Cl(-) channel as a regulator of acquired cisplatin resistance[J]. Anticancer Res, 2008, 28(1A):75-83.[78] Elbert L Lee, Takahiro Shimizu, Tomoko Ise, et al. Impaired activity of volume-sensitive Cl- channel is involved in cisplatin resistance of cancer cells[J]. J Cell Physiol, 2007, 211(2):513-521.[79] Hana Inoue, Yasunobu Okada. Roles of volume-sensitive chloride channel in excitotoxic neuronal injury[J]. J Neurosci, 2007, 27(6):1445-1455.[80] Liu Hong-tao, Tenpei Akita, Takahiro Shimizu, et al. Bradykinin-induced astrocyte-neuron signalling: glutamate release is mediated by ROS-activated volume-sensitive outwardly rectifying anion channels[J]. J Physiol, 2009, 587(Pt 10):2197-2209.[81] Harold K Kimelberg. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy[J]. Glia, 2005, 50(4):389-397.[82] Clive M Baumgarten, Henry F Clemo. Swelling-activated chloride channels in cardiac physiology and pathophysiology[J]. Prog Biophys Mol Biol, 2003, 82(1-3):25-42.[83] Wang X, Takahashi N, Uramoto H, et al. Chloride channel inhibition prevents ROS-dependent apoptosis induced by ischemia-reperfusion in mouse cardiomyocytes[J]. Cell Physiol Biochem, 2005, 16(4-6):147-154.[84] Thomas J Jentsch, Klaus Steinmeyer, Gisela Schwarz. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes[J]. Nature, 1990, 348(6301):510-514.[85] Raimund Dutzler, Ernest B Campbell, Martine Cadene, et al. X-ray structure of a ClC chloride channel at 3.0 A reveals the molecular basis of anion selectivity[J]. Nature, 2002, 415(6869):287-294.[86] Manuela Koch, Klaus Steinmeyer, C Lorenz, et al. The skeletal muscle chloride channel in dominant and recessive human myotonia[J]. Science, 1992, 257(5071):797-800.[87] Rauacute Estevez, Thomas Boettger, Valentin Stein, et al. Barttin is a Cl- channel beta-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion[J]. Nature, 2001, 414(6863):558-561.[88] Gabriel Stolting, Martin Fischer, Christoph Fahlke. CLC channel function and dysfunction in health and disease[J]. Front Physiol, 2014, 5:378.[89] Riordan J R, Rommens J M, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA[J]. Science, 1989, 245(4922):1066-1073.[90] Melanie Childers, George Eckel, Alan Himmel, et al. A new model of cystic fibrosis pathology: lack of transport of glutathione and its thiocyanate conjugates[J]. Med Hypotheses, 2007, 68(1):101-112.[91] Jentsch T J, Gunther W. Chloride channels: an emerging molecular picture[J]. Bioessays, 1997, 19(2):117-126.[92] Erik M Schwiebert, D J Benos, Marie E Egan, et al. CFTR is a conductance regulator as well as a chloride channel[J]. Physiol Rev, 1999, 79(1 Suppl):S145-166.[93] 王丽娜, 王晨光, 王赫, 等. 离子通道药理学[M]. 北京:人民卫生出版社, 2005.[94] Bormann J, Hamill O P, Sakmann B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones[J]. J Physiol, 1987, 385:243-286.[95] Thomas J Jentsch. Chloride channels: a molecular perspective[J]. Curr Opin Neurobiol, 1996, 6(3):303-310.[96] 关兵才, 张海林, 李之望, 等, 细胞电生理学基本原理与膜片钳技术[M].北京:科学出版社, 2013. |
[1] | 边芳,侯艳宁. ATP 敏感钾通道在神经退行性疾病中的研究进展[J]. 神经药理学报, 2017, 7(5): 52-58. |
[2] | 张碧琼,张耀东,吴文宁,等. 慢性地塞米松通过激活BK-NLRP1信号通路导致海马神经元损伤的研究[J]. 神经药理学报, 2017, 7(3): 48-48. |
[3] | 高圆圆,郭春燕. 瞬时受体电位通道在代谢综合征中的研究进展[J]. 神经药理学报, 2016, 6(3): 38-43. |
[4] | 李黎,张海林. CCL2/CCR2 参与神经病理性疼痛的多靶点作用机制[J]. 神经药理学报, 2016, 6(1): 49-57. |
[5] | 姜涛,杨宝学. 尿素通道蛋白的组织分布和生理功能[J]. 神经药理学报, 2015, 5(5): 40-48. |
[6] | 王川,单彬,王琼,张海林. 电压门控性钠通道Nav1.7 及其特异性阻断剂在神经病理性痛中的研究进展[J]. 神经药理学报, 2015, 5(5): 49-56. |
[7] | 李英杰, 杨宝学. 麻醉药作用机制及其保护作用与离子通道的研究进展[J]. 神经药理学报, 2013, 3(4): 39-46. |
[8] | GUO Yan-yan, QI Feng-yan, ZHAO Ming-gao. Involvement of Large-conductance Ca2+-activated K+ Channels in the Synaptic Transmission in the Lateral Amygdala / 大电导钙依赖性钾通道参与调节杏仁核侧核突触传递[J]. 神经药理学报, 2012, 2(1): 10-19. |
[9] | 王伟玲,杨宝学. 水通道蛋白4与神经系统疾病[J]. 神经药理学报, 2012, 2(1): 20-27. |
[10] | 薛占霞, 彭亮. 高血氨诱导肝性脑病发生发展的研究现状[J]. 神经药理学报, 2011, 1(4): 33-41. |
[11] | 戴婷, 陈中国, 段磊, 丁建花, 范益, 胡刚. Involvement of Kir6.2-composing ATP-sensitive potassium channels in phencyclidine-induced negative symptoms of schizophrenia / Kir6.2构成的ATP敏感性钾通道在苯环己哌啶诱导的精神分裂症阴性症状中的作用[J]. 神经药理学报, 2011, 1(1): 31-38. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||