神经药理学报 ›› 2015, Vol. 5 ›› Issue (3): 46-64.
• 综述 • 上一篇
汪伦政,谢文娟,唐铁山
出版日期:
2015-06-26
发布日期:
2015-07-06
通讯作者:
唐铁山,男,研究员,博士生导师;研究方向:分子神经生物学;Tel:+86-10-64807296,E-mail:tangtsh@ioz.ac.cn
作者简介:
汪伦政,男,研究生;研究方向:分子神经生物学;E-mail:scodking@qq.com
基金资助:
本研究受到科技部重大科学计划(2011CB965003, 2012CB944702)、国家自然科学基金 (81371415, 31570816, 31401151, 81300982)的资助
WANG Lun-zheng, XIE Wen-juan, TANG Tie-Shan
Online:
2015-06-26
Published:
2015-07-06
Contact:
唐铁山,男,研究员,博士生导师;研究方向:分子神经生物学;Tel:+86-10-64807296,E-mail:tangtsh@ioz.ac.cn
About author:
汪伦政,男,研究生;研究方向:分子神经生物学;E-mail:scodking@qq.com
Supported by:
本研究受到科技部重大科学计划(2011CB965003, 2012CB944702)、国家自然科学基金 (81371415, 31570816, 31401151, 81300982)的资助
摘要: 成体哺乳动物的神经元是退出细胞周期的终末分化细胞,因此长期以来神经系统被认为缺乏再生能力。自神经干细胞(neural stem cells,NSCs)及神经发生在许多物种尤其哺乳动物的成体中被广泛发现和证实后,成体中枢神经系统的可塑性和神经发生的机制和功能成为神经科学研究的热点。神经干细胞的基因组在多种表观遗传因子和微环境的共同调节下,在特定时间和空间中表达出特异的RNA及蛋白质。新生神经细胞经过增殖、分化、迁移、整合并最终成熟为特化的神经细胞,这一过程即为成体神经发生。成体哺乳动物脑中的神经发生贯穿整个生命周期,且已在侧脑室的室管膜下区(subventricular zone,SVZ)和海马齿状回(dentate gyrus,DG)的颗粒下区(subgranular zone,SGZ)被明确证实。成体神经发生受到多种生理和病理因素的调控,与嗅球和海马等脑区的功能密切相关。移植神经干细胞治疗中枢神经系统(central nervous system,CNS)变性疾病被广泛研究并且在临床前实验中有明显的治疗效果。然而,成体神经发生的分子机制尚不明确,尤其新生神经细胞如何与CNS的神经细胞、免疫细胞、以及微环境相互作用而发挥治疗作用需要深入研究。此外,神经干细胞移植疗法还需要解决神经干细胞来源、体外培养技术、免疫排斥、移植剂量、脑部定位以及各种疾病治疗的最佳时间窗口选择等问题。总之,深入了解神经干细胞及神经发生的机制不仅会极大地推动神经科学的基础研究,也为CNS相关疾病提供了新的有效的治疗方案,有着广阔的理论和应用前景。
中图分类号:
汪伦政,谢文娟,唐铁山. 神经干细胞、成体神经发生以及神经变性疾病的细胞移植治疗[J]. 神经药理学报, 2015, 5(3): 46-64.
WANG Lun-zheng, XIE Wen-juan, TANG Tie-Shan. Neural Stem Cells, Adult Neurogenesis and Cell Therapy for Neurodegenerative Diseases[J]. Acta Neuropharmacologica, 2015, 5(3): 46-64.
[1] Vikram Khurana, Daniel F Tardiff, Chee Y Chung, et al. Toward stem cell-based phenotypic screens for neurodegenerative diseases[J]. Nat Rev Neurol, 2015, 11 (6): 339-350.[2] Ann P Chidgey, Daniel Layton, Alan Trounson, et al. Tolerance strategies for stem-cell-based therapies[J]. Nature, 2008, 453(7193): 330-337.[3] Junko Hori, Tat Fong Ng, Maries Shatos, et al. Neural progenitor cells lack immunogenicity and resist destruction as allografts[J]. Stem Cells, 2003, 21(4): 405-416.[4] Zhao Tong-biao, Zhang Zhen-ning, Peter D Westenskow, et al. Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells[J]. Cell Stem Cell, 2015, 17(3): 353-359.[5] Zhao Tong-biao, Zhang Zhen-ning, Rong Zhi-li, et al. Immunogenicity of induced pluripotent stem cells[J]. Nature, 2011, 474: 212-215.[6] Raewyn M Seaberg, Derek van der Kooy. Stem and progenitor cells: the premature desertion of rigorous definitions[J]. Trends in Neurosciences, 2003, 26(3): 125-131.[7] R M Walton. Postnatal neurogenesis: of mice, men, and macaques[J]. Vet Pathol, 2012, 49(1): 155-165.[8] Irmgard Amrein, Hans-Peter Lipp, Adult hippocampal neurogenesis of mammals: evolution and life history[J]. Biol Lett, 2009, 5(1): 141-144.[9] Andrea H Brand, Frederick J Livesey, Neural stem cell biology in vertebrates and invertebrates: more alike than different? [J]. Neuron, 2011, 70(4): 719-729.[10] Eliot A Brenowitz, T A Larson, Neurogenesis in the adult avian song-control system[J]. Cold Spring Harb Perspect Biol, 2015, 7 (6): A019000.[11] Liam J Drew, Stefano Fusi, Rene Hen, Adult neurogenesis in the mammalian hippocampus: why the dentate gyrus? [J]. Learn Mem, 2013, 20(12): 710-729.[12] Barbara S Beltz, Zhang Yi, Jeanne L Benton, et al. Adult neurogenesis in the decapod crustacean brain: a hematopoietic connection? [J]. Eur J Neurosci, 2011, 34 (6): 870-883.[13] Myriam Cayre, Sophie Scotto-Lomassese, Jordane Malaterre, et al. Understanding the regulation and function of adult neurogenesis: contribution from an insect model, the house cricket[J]. Chem Senses, 2007, 32(4): 385-395.[14] Kyung Hwa Kang, Heinrich Reichert. Control of neural stem cell self-renewal and differentiation in Drosophila[J]. Cell Tissue Res, 2015, 359(1): 33-45.[15] Ismael Fernandez-Hernandez, Christa Rhiner. New neurons for injured brains? The emergence of new genetic model organisms to study brain regeneration[J]. Neurosci Biobehav Rev, 2015, 56: 62-72.[16] Kirsty L Spalding, Olaf Bergmann, Kanar Alkass, et al. Dynamics of hippocampal neurogenesis in adult humans[J]. Cell, 2013, 153 (6): 1219-1227.[17] Ewa Rojczyk-Golebiewska, Artur Palasz, Ryszard Wiaderkiewicz, Hypothalamic subependymal niche: a novel site of the adult neurogenesis[J]. Cell Mol Neurobiol, 2014, 34(5): 631-642.[18] Roberto Maggi, Jacopo Zasso, Luciano Conti. Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus[J]. Front Cell Neurosci, 2014, 8: 440.[19] Christie D Fowler, Yan Liu, Wang Zuo-xin. Estrogen and adult neurogenesis in the amygdala and hypothalamus[J]. Brain Res Rev, 2008, 57 (2): 342-351.[20] William D Richardson, Kaylene M Young, Richa B Tripathi, et al. NG2-glia as multipotent neural stem cells: fact or fantasy? [J]. Neuron, 2011, 70(4): 661-673.[21] Erica Butti, Melania Cusimano, Marco Bacigaluppi, et al. Neurogenic and non-neurogenic functions of endogenous neural stem cells[J]. Front Neurosci, 2014, 8(8): 92.[22] Juan Song, Kimberly M Christian, Guo-li Ming, et al. Modification of hippocampal circuitry by adult neurogenesis[J]. Dev Neurobiol, 2012, 72(7): 1032-1043.[23] Lu Zhen-jie, Michael R Elliott, Yu-bo Chen, et al. Phagocytic activity of neuronal progenitors regulates adult neurogenesis[J]. Nat Cell Biol, 2011, 13(9): 1076-1083.[24] Daeho Park, Annie-Carole Tosello-Trampont, Michael R Elliott, et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module[J]. Nature, 2007, 450: 430-434.[25] Fred H Gage, Sally Temple, Neural stem cells: generating and regenerating the brain[J]. Neuron, 2013, 80(3): 588-601.[26] Benjamin Lacar, Sarah L Parylak, Krishna C Vadodaria, et al. Increasing the resolution of the adult neurogenesis picture[J]. F1000Prime Rep, 2014, 6: 8.[27] Shao-yu Ge, Eyleen L Goh, Kurt A Sailor, et al. GABA regulates synaptic integration of newly generated neurons in the adult brain[J]. Nature, 2006, 439: 589-593.[28] Fiona Doetsch. A niche for adult neural stem cells[J]. Current Opinion in Genetics & Development, 2003, 13(5): 543-550.[29] Qin Shen, Yue Wang, Erzsebet Kokovay, et al. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions[J]. Cell Stem Cell, 2008, 3(11): 289-300.[30] Do-Yeon Kim, Inmoo Rhee, Jihye Paik. Metabolic circuits in neural stem cells[J]. Cell Mol Life Sci, 2014, 71(21): 4221-4241.[31] Chunmei Zhao, Wei Deng, Fred H Gage. Mechanisms and functional implications of adult neurogenesis[J]. Cell, 2008, 132(4): 645-660.[32] Vivian Capilla-Gonzalez, Emily Lavell, Alfredo Quinones-Hinojosa, et al. Regulation of subventricular zone-derived cells migration in the adult brain[J]. Adv Exp Med Biol, 2015, 853: 1-21.[33] Hiroyuki Koizumi, Holden Higginbotham, Tiffany Poon, et al. Doublecortin maintains bipolar shape and nuclear translocation during migration in the adult forebrain[J]. Nat Neurosci, 2006, 9(6): 779-786.[34] Sheyla Mejia-Gervacio, Kerren Murray, Pierre-Marie Lledo, NKCC1 controls GABAergic signaling and neuroblast migration in the postnatal forebrain[J]. Neural Dev, 2011, 6: 4.[35] Yuki Hirota, Toshio Ohshima, Naoko Kaneko, et al. Cyclin-dependent kinase 5 is required for control of neuroblast migration in the postnatal subventricular zone[J]. J Neurosci, 2007, 27 (47): 12829-12838.[36] Luca Bonfanti. PSA-NCAM in mammalian structural plasticity and neurogenesis[J]. Progress Neurobiology, 2006, 80(3): 129-164.[37] A K Mobley, J H McCarty, Beta8 integrin is essential for neuroblast migration in the rostral migratory stream[J]. Glia, 2011, 59(11): 1579-1587.[38] Fernanda I Staquicini, Emmanuel Dias-Neto, Jian-xue Li, et al. Discovery of a functional protein complex of netrin-4, laminin gamma1 chain, and integrin alpha6beta1 in mouse neural stem cells[J]. Proc Natl Acad Sci USA, 2009, 106(8): 2903-2908.[39] O Gonzalez-Perez, F Gutierrez-Fernandez, V Lopez-Virgen, et al. Immunological regulation of neurogenic niches in the adult brain[J]. Neuroscience, 2012, 226: 270-281.[40] Jaime Imitola, Khadir Raddassi, Kook I Park, et al. Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway[J]. Proc Natl Acad Sci USA, 2004, 101(52): 18117-18122.[41] Anne Jaerve, Hans W Muller. Chemokines in CNS injury and repair[J]. Cell Tissue Res, 2012, 349 (1): 229-248.[42] Abdelhak Belmadani, Phuong B Tran, Dong-jun Ren, et al. Chemokines regulate the migration of neural progenitors to sites of neuroinflammation[J]. J Neurosci, 2006, 26(12): 3182-3191.[43] R J Gordon, N F Mehrabi, C Maucksch, et al. Chemokines influence the migration and fate of neural precursor cells from the young adult and middle-aged rat subventricular zone[J]. Exp Neurol, 2012, 233(1): 587-594.[44] Bhaskar Saha, Sophie Peron, Kerren Murray, et al. Cortical lesion stimulates adult subventricular zone neural progenitor cell proliferation and migration to the site of injury[J]. Stem Cell Res, 2013, 11(3): 965-977.[45] Oscar Gonzalez-Perez, Ricardo Romero-Rodriguez, Mario Soriano-Navarro, J et al. Epidermal growth factor induces the progeny of subventricular zone type B cells to migrate and differentiate into oligodendrocytes[J]. Stem Cells, 2009, 27(8): 2032-2043.[46] Basam Z Barkho, Ari E Munoz, Xue-kun Li, et al. Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines[J]. Stem Cells, 2008, 26(12): 3139-3149.[47] Dong-hong Zhao, Joseph Najbauer, Elizabeth Garcia, et al. Neural stem cell tropism to glioma: critical role of tumor hypoxia[J]. Mol Cancer Res, 2008, 6: 1819-1829.[48] Mateo Ziu, Nils Ole Schmidt, Theresa G Cargioli, et al. Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells[J]. J Neurooncol, 2006, 79(2): 125-133.[49] Richard Frank, Joseph Najbauer, Karen S Aboody, Concise review: stem cells as an emerging platform for antibody therapy of cancer[J]. Stem Cells, 2010, 28(11): 2084-2087.[50] Anna Wade, Andrew McKinney, Joanna J Phillips. Matrix regulators in neural stem cell functions[J]. Biochim Biophys Acta, 2014, 1840(8): 2520-2525.[51] Noelia Urban, Francois Guillemot. Neurogenesis in the embryonic and adult brain: same regulators, different roles[J]. Front Cell Neurosci, 2014, 8: 396.[52] Itaru Imayoshi, Ryoichiro Kageyama. bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells[J]. Neuron, 2014, 82(1): 9-23.[53] Siim Pauklin, Ludovic Vallier. The cell-cycle state of stem cells determines cell fate propensity[J]. Cell, 156 (2014) 1338.[54] Kiyohito Murai, Qiu-hao Qu, Guo-qiang Sun, et al. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model[J]. Proc Natl Acad Sci USA, 2014, 111(25): 9115-9120.[55] Masato Sawada, Mami Matsumoto, Kazunobu Sawamoto. Vascular regulation of adult neurogenesis under physiological and pathological conditions[J]. Front Neurosci, 2014, 8(8): 53.[56] Nobuyuki Sakayori, Ryuichi Kimura, Noriko Osumi. Impact of lipid nutrition on neural stem/progenitor cells[J]. Stem Cells Int, 2013, 2013: 973508.[57] Jean-Claude Platel, Severine Stamboulian, Ivy Nguyen, et al. Neurotransmitter signaling in postnatal neurogenesis: The first leg[J]. Brain Res Rev, 2010, 63:60-71.[58] Amanda Sierra, Sol Beccari, Irune Diaz-Aparicio, et al. Surveillance, phagocytosis, and inflammation: how never-resting microglia influence adult hippocampal neurogenesis[J]. Neural Plast, 2014, 2014: 610343.[59] Lara D LaDage. Environmental change, the stress response, and neurogenesis[J]. Integr Comp Biol, 2015, 55(3): 372-383.[60] Howard Cedar, Yehudit Bergman. Linking DNA methylation and histone modification: patterns and paradigms[J]. Nature Reviews Genetics, 2009, 10: 295-304.[61] Marco Prinz, Mathias Heikenwalder, Tobias Junt, et al. Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion[J]. Nature, 2003, 425: 957-962.[62] Vasso Episkopou. SOX2 functions in adult neural stem cells[J]. Trends in Neurosciences, 28 2005, 28(5): 219-221.[63] Qi-kuan Hu, Li-rong Zhang, Jin-hua Wen, et al. The EGF receptor-sox2-EGF receptor feedback loop positively regulates the self-renewal of neural precursor cells[J]. Stem Cells, 2010, 28(2): 279-286.[64] Zhi-bin Wang, Chong-zhi Zang, Kairong Cui, et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes[J]. Cell, 2009, 138(5): 1019-1031.[65] Deng-ke Ma, Maria C N Marchetto, Jinjie U Guo, et al. Epigenetic choreographers of neurogenesis in the adult mammalian brain[J]. Nat Neurosci, 2010, 13(11): 1338-1344.[66] Jia-qi Sun, Jia-wei Sun, Guo-Li Ming, et al. Epigenetic regulation of neurogenesis in the adult mammalian brain[J]. Eur J Neurosci, 2011, 33(6): 1087-1093.[67] Guo-qiang Sun, Chelsea Fu, Caroline Shen, et al. Histone deacetylases in neural stem cells and induced pluripotent stem cells[J]. J Biomed Biotechnol, 2011, 2011: 835968.[68] B Yao, P Jin. Unlocking epigenetic codes in neurogenesis[J]. Genes Dev, 2014, 28(12): 1253-1271.[69] Carlos P Fitzsimons, Emma van Bodegraven, Marjin Schouten, et al. Epigenetic regulation of adult neural stem cells: implications for Alzheimer's disease[J]. Mol Neurodegener, 2014, 9: 25.[70] Yassemi Koutmani, Katia P Karalis. Neural stem cells respond to stress hormones: distinguishing beneficial from detrimental stress[J]. Front Physiol, 2015, 6: 77.[71] Andrew J Crowther, Juan Song, Activity-dependent signaling mechanisms regulating adult hippocampal neural stem cells and their progeny[J]. Neurosci Bull, 2014, 30(4): 542-556.[72] Wen-long Xia, Yan-li Liu, Jian-wei Jiao. GRM7 regulates embryonic neurogenesis via CREB and YAP[J]. Stem cell reports, 2015, 4: 795-810.[73] Claudio Giachino, Verdon Taylor. Notching up neural stem cell homogeneity in homeostasis and disease[J]. Front Neurosci, 2014, 8: 32.[74] Eric J Benner, Dominic Luciano, Rebecca Jo, et al. Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4[J]. Nature, 2013, 497(7449): 369-373.[75] Adan Aguirre, Maria Eulalia Rubio, Vittorio Gallo. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal[J]. Nature, 2010, 467(7313): 323-327.[76] Valeria Bortolotto, Bruna Cuccurazzu, Pier Luigi Canonico, et al. NF-kappaB mediated regulation of adult hippocampal neurogenesis: relevance to mood disorders and antidepressant activity[J]. Biomed Res Int, 2014, 2014(5): 612798.[77] Marlen Knobloch, Simon M G Braun, Luis Zurkirchen, et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis[J]. Nature, 2013, 493(7431): 226-230.[78] J Samanta, E M Grund, H M Silva, et al. Inhibition of Gli1 mobilizes endogenous neural stem cells for remyelination[J]. Nature, 2015, 526(7573): 448-452.[79] Wei-xiang Guo, Li Zhang, Devin M Christopher, et al. RNA-binding protein FXR2 regulates adult hippocampal neurogenesis by reducing Noggin expression[J]. Neuron, 2011, 70(5): 924-938.[80] Van A Doze, Dianne M Perez. G-protein-coupled receptors in adult neurogenesis[J]. Pharmacol Rev, 2012, 64(3): 645-675.[81] Sylvie Remaud, Jean-David Gothie, Ghislaine Morvan-Dubois, et al. Thyroid hormone signaling and adult neurogenesis in mammals[J]. Front Endocrinol (Lausanne), 2014, 5: 62.[82] Emmanuelle C Genin, Nicolas Caron, Renaud Vandenbosch, et al. Concise review: forkhead pathway in the control of adult neurogenesis[J]. Stem Cells, 2014, 32(6): 1398-1407.[83] Lucia Leone, Maria Vittoria Podda, Claudio Grassi. Impact of electromagnetic fields on stem cells: common mechanisms at the crossroad between adult neurogenesis and osteogenesis[J]. Frontiers in Cellular Neuroscience, 2015, Doi: 10.3389/fncel.2015.00228.[84] Chary Marquez Batista, Eric Domingos Mariano, Breno Jose Barbosa, et al. Adult neurogenesis and glial oncogenesis: when the process fails[J]. Biomed Res Int, 2014, 2014: 438639.[85] Luigi Carlessi, Elena Fusar Poli, Lidia De Filippis, et al. ATM-deficient human neural stem cells as an in vitro model system to study neurodegeneration[J]. DNA Repair (Amst), 2013, 12(8): 605-611.[86] Ludmila A Voloboueva, Rona G Giffard. Inflammation, mitochondria, and the inhibition of adult neurogenesis[J]. J Neurosci Res, 2011, 89: 1989-1996.[87] Ting-ting Huang, Yani Zou, Riki Corniola. Oxidative stress and adult neurogenesis--effects of radiation and superoxide dismutase deficiency[J]. Semin Cell Dev Biol, 2012, 23(7): 738-744.[88] Timothy J Schoenfeld, Elizabeth Gould. Stress, stress hormones, and adult neurogenesis[J]. Exp Neurol, 2012, 23(1): 12-21.[89] Steve C Danzer. Depression, stress, epilepsy and adult neurogenesis[J]. Exp Neurol, 2012, 233(1): 22-32.[90] Maria Adele Rueger, Michael Schroeter. In vivo imaging of endogenous neural stem cells in the adult brain[J]. World J Stem Cells, 2015, 7(1): 75-83.[91] Nicolas Toni, Diego A Laplagne, Chun-mei Zhao, et al. Neurons born in the adult dentate gyrus form functional synapses with target cells[J]. Nat Neurosci, 2008, 11(8): 901-907.[92] N F Ho, J M Hooker, A Sahay, et al. In vivo imaging of adult human hippocampal neurogenesis: progress, pitfalls and promise[J]. Mol Psychiatry, 2013, 18: 404-416.[93] David M Panchision, Hui-Ling Chen, Francesca Pistollato, et al. Optimized flow cytometric analysis of central nervous system tissue reveals novel functional relationships among cells expressing CD133, CD15, and CD24[J]. Stem Cells, 2007, 25(6): 1560-1570.[94] Tobias Bergstrom, Karin Forsberg-Nilsson. Neural stem cells: brain building blocks and beyond[J]. Ups J Med Sci, 2012, 117(2): 132-142.[95] Mercy Varghese, Havard Olstorn, Jon Berg-Johnsen, et al. Isolation of human multipotent neural progenitors from adult filum terminale[J]. Stem Cells Dev, 2009, 18(4): 603-613.[96] Wei-xiang Guo, Natalie E Patzlaff, Emily M Jobe, et al. Isolation of multipotent neural stem or progenitor cells from both the dentate gyrus and subventricular zone of a single adult mouse[J]. Nature protocols, 2012, 7(11): 2005-2012.[97] Hideyuki Okano, Kazunobu Sawamoto. Neural stem cells: involvement in adult neurogenesis and CNS repair[J]. Philos Trans R Soc Lond B Biol Sci, 2008, 363(1500): 2111-2122.[98] Lamya S Shihabuddin, Seng H Cheng. Neural stem cell transplantation as a therapeutic approach for treating lysosomal storage diseases[J]. Neurotherapeutics, 2011, 8(4): 659-667.[99] Masanori Yoneyama, Tatsuo Shiba, Shigeru Hasebe, et al. Adult neurogenesis is regulated by endogenous factors produced during neurodegeneration[J]. J Pharmacological Sciences, 2011, 115: 425-432.[100] Ting Yuan, Wei Liao, Nian-Hua Feng, et al. Human induced pluripotent stem cell-derived neural stem cells survive, migrate, differentiate, and improve neurologic function in a rat model of middle cerebral artery occlusion[J]. Stem Cell Res Ther, 2013, 4: 73.[101] Gianvito Martino, Stefano Pluchino, Luca Bonfanti, et al. Brain regeneration in physiology and pathology: the immune signature driving therapeutic plasticity of neural stem cells[J]. Physiol Rev, 2011, 91(4): 1281-1304.[102] Ann Tsukamoto, Nobuko Uchida, Alexandra Capela, et al. Clinical translation of human neural stem cells[J]. Stem Cell Res Ther, 2013, 4(4): 102.[103] Yan Chen, Li-hong Liu. Modern methods for delivery of drugs across the blood-brain barrier[J]. Adv Drug Deliv Rev, 2012, 64(7): 640-665.[104] Andrew M Wong, Ahad A Rahim, Simon N Waddington, et al. Current therapies for the soluble lysosomal forms of neuronal ceroid lipofuscinosis[J]. Biochem Soc Trans, 2010, 38(6): 1484-1488.[105] Wei-xiang Guo, Andrea M Allan, Rui-ting Zong, et al. Ablation of Fmrp in adult neural stem cells disrupts hippocampus-dependent learning[J]. Nature medicine, 2011, 17(5): 559-565.[106] Wei-xiang Guo, Adeline C Murthy, Li Zhang, et al. Inhibition of GSK3beta improves hippocampus-dependent learning and rescues neurogenesis in a mouse model of fragile X syndrome[J]. Human molecular genetics, 2012, 21(3): 681-691.[107] Mary C Whitman, Charles A Greer. Adult neurogenesis and the olfactory system[J]. Prog Neurobiol, 2009, 89(2): 162-175.[108] Takayuki Kondo, Misato Funayama, Kayoko Tsukita, et al. Focal transplantation of human iPSC-derived glial-rich neural progenitors improves lifespan of ALS mice[J]. Stem Cell Reports, 2014, 3(2): 242-249.[109] Mitra J Hooshmand, Christopher J Sontag, Nobuko Uchida, et al. Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: correlation of engraftment with recovery[J]. PLoS One, 2009, 4(6): e5871.[110] Desiree L Salazar, Nobuko Uchida, Frank P T Hamers, et al. Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model[J]. PLoS One, 2010, 5(8): e12272.[111] Samuel E Nutt, Ein-Ah Chang, Steven T Suhr, et al. Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model[J]. Exp Neurol, 2013, 248: 491-503.[112] Ji Cheol Shin, Keung Nyun Kim, Jeehyun Yoo, et al. Clinical trial of human fetal brain-derived neural stem/progenitor cell transplantation in patients with traumatic cervical spinal cord injury[J]. Neural Plast, 2015, 5: 630932.[113] Dong Hoon Hwang, Hae Young Shin, Min Jung Kwon, et al. Survival of neural stem cell grafts in the lesioned spinal cord is enhanced by a combination of treadmill locomotor training via insulin-like growth factor-1 signaling[J]. J Neurosci, 2014, 34: 12788-12800.[114] Veronica Galvan, Kun-lin Jin. Neurogenesis in the aging brain[J]. Clin Interv Aging, 2007, 2 (4) 605-610.[115] Sarawut Suksuphew, Parinya Noisa, Neural stem cells could serve as a therapeutic material for age-related neurodegenerative diseases[J]. World J Stem Cells, 2015, 7(2): 502-511.[116] Michael T Heneka, Douglas Golenbock, Eicke Latz. Innate immunity in Alzheimer's disease[J]. Nat Immunol, 2015, 16(3): 229-236.[117] Hyun Nam, Kee-Hang Lee, Do-Hyun Nam, et al. Adult human neural stem cell therapeutics: Current developmental status and prospect[J]. World J Stem Cells, 2015, 7(1): 126-136.[118] Dongsun Park, Seong Soo Joo, Tae Kyun Kim, et al. Human neural stem cells overexpressing choline acetyltransferase restore cognitive function of kainic acid-induced learning and memory deficit animals[J]. Cell transplantation, 2012, 21(1): 365-371.[119] Jodit L McBride, Soshana P Behrstock, Er Yun Chen, et al. Human neural stem cell transplants improve motor function in a rat model of Huntington's disease[J]. J Comp Neurol, 2004, 475(2): 211-219.[120] Wen-juan Xie, Jiu-Qiang Wang, Qiao-Chu Wang, et al. Adult neural progenitor cells from Huntington's disease mouse brain exhibit increased proliferation and migration due to enhanced calcium and ROS signals[J]. Cell Prolif, 2015, 48(5): 517-531.[121] S Kriks, J W Shim, J Piao, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease[J]. Nature, 2011, 480(7378): 547-551.[122] John W Cave, Meng Wang, Harriet Baker. Adult subventricular zone neural stem cells as a potential source of dopaminergic replacement neurons[J]. Front Neurosci, 2014, 8(8): 16.[123] Xin-jian Liu, Fang Li, Elizabeth A Stubblefield, et al. Direct reprogramming of human fibroblasts into dopaminergic neuron-like cells[J]. Cell Res, 2012, 22(2): 321-332.[124] Qian-fa Long, Ben-sheng Qiu, Kai Wang, et al. Genetically engineered bone marrow mesenchymal stem cells improve functional outcome in a rat model of epilepsy[J]. Brain Research, 2013, 1532: 1-13.[125] Simona Casarosa, Yuri Bozzi, Luciano Conti. Neural stem cells: ready for therapeutic applications? [J]. Mol Cell Ther, 2014, 2: 31.[126] Stefano Pluchino, Lucia Zanotti, Barbara Rossi, et al. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism[J]. Nature, 2005, 436: 266-271.[127] Jing-xian Yang, Zhi-long Jiang, Denise C Fitzgerald, et al. Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis[J]. J Clinical Investigation, 2009, 119(12): 3678-3691.[128] C Kleinschnitz, S Pluchino, L Zanotti, et al. Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function[J]. PLoS One, 2009, 4: e5959.[129] Wei Cao, Yi-qing Yang, Zheng-qi Wang, et al. Leukemia inhibitory factor inhibits T helper 17 cell differentiation and confers treatment effects of neural progenitor cell therapy in autoimmune disease[J]. Immunity, 2011, 35(26): 273-284.[130] Zhong Gao, Qing-ping Wen, Yang Xia, et al. Osthole augments therapeutic efficiency of neural stem cells–based therapy in experimental autoimmune encephalomyelitis[J]. J Pharmacological Sciences, 2014, 124(1): 54-65.[131] Daniele Bottai, Laura Madaschi, Anna Maria Di Giulio, et al. Viability-dependent promoting action of adult neural precursors in spinal cord injury[J]. Mol Med, 2008, 14(9-10): 634-644.[132] P Lu, L L Jones, E Y Snyder, et al. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury[J]. Experimental Neurology, 2003, 181(2): 115-129.[133] Yaniv Ziv, Hila Avidan, Stefano Pluchino, et al. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury[J]. Proc Natl Acad Sci USA, 2006, 103(35): 13174-13179.[134] Carmen Capone, Simona Frigerio, Stefano Fumagalli, et al. Neurosphere-derived cells exert a neuroprotective action by changing the ischemic microenvironment[J]. PLoS One, 2007, 2(4): e373.[135] Robert H Andres, Raymond Choi, Arjun Pendharkar, et al. The CCR2/CCL2 interaction mediates the transendothelial recruitment of intravascularly delivered neural stem cells to the ischemic brain[J]. Stroke, 2011, 42(10): 2923-2931.[136] Marco Bacigaluppi, Stefano Pluchino, Luca Peruzzotti-Jametti, et al. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms[J]. Brain, 2009, 132(Pt 8): 2239-2251.[137] Elena Giusto, Matteo Donega, Chiara Cossetti, et al. Neuro-immune interactions of neural stem cell transplants: from animal disease models to human trials[J]. Exp Neurol, 2014, 260: 19-32.[138] Katjia M Piltti, Sabrina N Avakian, Gabriella M Funes, et al. Transplantation dose alters the dynamics of human neural stem cell engraftment, proliferation and migration after spinal cord injury[J]. Stem Cell Res, 2015, 15(2): 341-353.[139] J A Kim, S Ha, K Y Shin, et al. Neural stem cell transplantation at critical period improves learning and memory through restoring synaptic impairment in Alzheimer's disease mouse model[J]. Cell Death Dis, 2015, 6(6): e1789. |
[1] | 杨靖,苑文英. 弓形虫感染对神经组织损伤及通过血脑屏障机制[J]. 神经药理学报, 2019, 9(5): 40-43. |
[2] | 吴县,洪浩. 胆汁酸及其受体与中枢神经系统疾病[J]. 神经药理学报, 2019, 9(1): 23-30. |
[3] | 张林,蒋宁,周文霞,张永祥. 疾病特异性诱导性多功能干细胞AD 模型建立[J]. 神经药理学报, 2018, 8(2): 54-54. |
[4] | 张力航,殷明. 小分子化合物影响神经干细胞再生的思考[J]. 神经药理学报, 2017, 7(1): 1-9. |
[5] | 苏晓梅,张丹参. 人参皂苷-Rg3 的药理作用研究进展[J]. 神经药理学报, 2017, 7(1): 38-44. |
[6] | 李鹏涛,杨晓楠,霍艳丽,张辉. 黄芪联合骨髓间充质干细胞治疗阿尔茨海默病的新思路[J]. 神经药理学报, 2016, 6(2): 31-36. |
[7] | 罗林明,姜懿纳,陈乃宏. 神经干细胞对胶质瘤发生发展影响的研究进展[J]. 神经药理学报, 2015, 5(5): 28-33. |
[8] | 李婷,苏涛,赫英舸,赫荣乔. 甲醛、组蛋白(脱)甲基化与学习记忆[J]. 神经药理学报, 2014, 4(6): 21-27. |
[9] | 唐闻晶, 马登磊, 李林. 体视学在神经科学研究领域中的应用[J]. 神经药理学报, 2014, 4(5): 24-29. |
[10] | 陈姣,楚世峰,王真真,陈乃宏 . GSK3在抑郁症发病机制中的研究进展[J]. 神经药理学报, 2014, 4(5): 44-54. |
[11] | 李国风, 骆海坤, 张建新. 硫化氢在中枢神经系统疾病中的作用研究进展[J]. 神经药理学报, 2014, 4(3): 49-56. |
[12] | 唐民科, 范悦, 刘长锁, 张均田. 丹酚酸B神经保护作用的机制与研究进展[J]. 神经药理学报, 2014, 4(1): 1-10. |
[13] | 刘婷婷, 王文. Eph/ephrin信号通路与脑神经发生的综述[J]. 神经药理学报, 2014, 4(1): 25-28. |
[14] | 郭兴道 李炜 张癸荣 张丹参 程鹏. 睡眠剥夺对学习记忆及中枢神经系统相关分子的影响[J]. 神经药理学报, 2014, 4(1): 34-51. |
[15] | 张思, 顾兵, 李华南, 张国福, 张水印, 闵友江. 诱导多能干细胞及其移植治疗脊髓损伤的研究现状[J]. 神经药理学报, 2013, 3(3): 57-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||