神经药理学报 ›› 2014, Vol. 4 ›› Issue (1): 58-64.
• 综述 • 上一篇
王琦 王弘凯 冉建华
出版日期:
2014-02-26
发布日期:
2014-06-06
通讯作者:
冉建华,女,教授,硕士研究生导师;研究方向:神经科学研究;E-mail:1315038024@qq.com
作者简介:
王琦,女,硕士研究生;研究方向:神经科学研究;E-mail:523839002@qq.com
WANG Qi, WANG Hong-kai, RAN Jian-hua
Online:
2014-02-26
Published:
2014-06-06
Contact:
冉建华,女,教授,硕士研究生导师;研究方向:神经科学研究;E-mail:1315038024@qq.com
About author:
王琦,女,硕士研究生;研究方向:神经科学研究;E-mail:523839002@qq.com
摘要: 丝裂原活化蛋白激酶磷酸酶-1(mitogen-activated protein kinase phosphatase-1,MKP-1)作为生物体内重要的信号转导系统——丝裂原活化蛋白激酶系统(mitogen-activated protein kinases,MAPKs)去磷酸化的重要调节者,在包括神经系统的各种生物学系统中发挥重要作用。本文对MKP-1的生物学活性、调控以及在神经系统中的作用进行综述,以期为MKP-1作为药理学靶点的相关研究提供新思路。
王琦 王弘凯 冉建华. 神经系统中丝裂原活化蛋白激酶磷酸酶-1的研究进展[J]. 神经药理学报, 2014, 4(1): 58-64.
WANG Qi, WANG Hong-kai, RAN Jian-hua. The Progress of Mitogen-activated Protein Kinase Phosphatase-1 (MKP-1) in Nervous System[J]. ACTA NEUROPHARMACOLOGICA, 2014, 4(1): 58-64.
[1] Paul S Shapiro, Natalie G Ahn. Feedback regulation of raf-1 and mitogen-activated protein(MAP)kinase kinases 1 and 2 by map kinase phosphatase-1(MKP-1)[J].Biol Chem, 1998, 273(3):1788-1793.[2] G L Johnson, R Lapadat. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases[J].Science, 2002, 298(5600):1911-1912.[3] Shinri Tamura, Masahito Hanada, Motoko Sasaki, et a1.Regulation of stress—activated protein kinase signaling pathways by protein phosphatases[J].Eur J Biochem, 2002, 269(4):1060-1066.[4] Tarek Boutros, Eric Chevet, Peter Metrakos. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer[J]. Pharmacol Rev, 2008, 60(3):261–310.[5] Montesrrat Camps, Anton Nichols, Steve Arkinstall. Dual specificity phosphatases: a gene family for control of MAP kinase function[J]. Faseb, 2000, 14(1):6–16.[6] Andres Alonso, Joanna Sasin, Nunzio Bottini, et al. Protein tyrosine phosphatases in the human genome[J]. Cell, 2004, 117(6):699–711.[7] Aspasia Theodosiou, Alan Ashworth. MAP kinase phosphatases[J]. Genome Biol, 2002, 3(7):3009.[8] Amjad Farooq, Zhou Ming-ming. Structure and regulation of MAPK phosphatases[J]. Cell Signal, 2004, 16(7):769–779.[9] Mashael Al-Mutairi, Sameer Al-Harthi, Laurence Cadalbert, et al. Overexpression of mitogen-activated protein kinase phosphatase-2 enhances adhesion molecule expression and protects against apoptosis in human endothelial cells[J]. Br J Pharmacol, 2012, 161(4):782–798.[10] Chi Hong-bo, Sean P Barry, Rachel J Roth, et al. Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses[J]. PNAS, 2006, 103(7):2274–2279[11] Samia Reffas, Werner Schlegel. Compartment-specific regulation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) by ERK-dependent and non-ERK-dependent inductions of MAPK phosphatase (MKP)-3 and MKP-1 in differentiating P19 cells[J]. J Biochem, 2000, 352(Pt 3):701–708.[12] D M Owens, S M Keyse. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases[J]. Oncogene, 2007, 26(22):3203–3213.[13] Lyn M Wancket, W Joshua Frazier, Liu Yu-sen. Mitogen-activated protein kinase -1 (MKP-1) in immunology, physiology, and disease[J]. Life Sci, 2012, 90(7-8):237-248.[14] Tarek Boutres, Eric Chevet, Peter Metrakos. Mitogen-Activated Protein (MAP) Kinase/MAP Kinase Phosphatase Regulation: Roles in Cell Growth,Death, and Cancer[J] Pharmacol Rev, 2008, 60:261–310.(与第4条重复)[15] David N Slack, Ole-Morten Seternes, Mads Gabrielsen, et al. Distinct binding determinants for erk2/p38alpha and jnk map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1 [J]. Biol Chem, 2001, 276(19):16491–16500.[16] Dorothy Hutter, Chen Pei-li, Janice Barnes, et al. Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation[J]. Biochem J, 2000, 352(Pt 1):155–163.[17] Cao Wang-sen, Clare Bao, Elizaveta Padalko, et al. Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling [J]. Exp Med, 2008, 205(6):1491–1503.[18] Dorothy Hutter, Pei-li Chen, Janice Barnes, et al. Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation[J]. Biochem, 2000, 352(Pt 1):155–163.(与18重复) [19] David N Slack, Ole-Morten Seternes, Mads Gabrielsen, et al. Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1[J]. J Biol Chem, 2001, 276(19):16491–1500.(与15重复) [20] Liu Yusen, Myriam Gorospe, Yang Chun-lin, et al. Role of mitogen-activated protein kinase phosphatase during the cellular response to genotoxic stress. Inhibition of c-Jun N-terminal kinase activity and AP-1-dependent gene activation [J] . J Biol Chem, 1995, 270(15):8377–8380. [21] Sun Hong, Catherine H Charles, Lester F Lau, et al. MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo[J]. Cell, 1993, 75(3):487–493. [22] Ester Sanchez-Tillo, Monica Comalada, Jordi Xaus, et al. JNK1 Is required for the induction of Mkp1 expression in macrophages during proliferation and lipopolysaccharidedependent activation[J]. J Biol Chem, 2007, 282(17):12566–12573. [23] Yukio Hiroi, Junko Hiroi, Suniyo Kudoh, et al. Two distinct mechanisms of angiotensin IIinduced negative regulation of the mitogen-activated protein kinases in cultured cardiac myocytes[J]. Hypertens Res, 2001, 24(4):385–94. [24] Yuki Kuwano, Hyeon Ho Kim, K Abdelmohsen, et al. MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90[J]. Cell Biol, 2008, 28(14):4562–4575. [25] Zhu Qing-Yuan, Liu Qin, Chen Jian-Xia, et al. MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages [J]. Immunol, 2010, 185(12):7435–7442. [26] T Noguchi, R Metz, L Chen, et al. Structure,mapping, and expression of erp, a growth factor-inducible gene encoding a nontransmembrane protein tyrosine phosphatase, and effect of ERP on cell growth[J].Mol Cell Biol, 1993, 13(9):5195–5205.[27] Lin Yun-Wei, Chuang Show-Mei, Yang Jia-Ling. ERK1/2 achieves sustained activation by stimulating MAPK phosphatase-1 degradation via the ubiquitin-proteasome pathway [J]. J Biol Chem, 2003, 278(24):21534–21541. [28] Hideaki Kamata, Shi-ichi Honda, Shin Maeda, et al. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases[J]. Cell, 2005, 120(5):649–661.[29] Linda A Tephly, A Brent Carter. Differential expression and oxidation of MKP-1 modulates TNF-alpha gene expression[J]. Cell Mol Biol, 2007, 37(3):366–374. [30] Zhuo Qian, Mary Gilbert, Eric R Kandel. Temporal and spatial regulation of the expression of BAD2, a MAP kinase phosphatase, during seizure, kindling and long-term potentiation [J]. Learn Mem, 1994, 1(3):180-188.[31] Haruhito Horita, Kazuhiro Wada, Miriam V Rivas, et al. The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons[J] . Comp Neurol, 2010, 518(14):2873-2901.[32] Chen Mei-feng, Hsiun-Ing Chen, Chauying J Jen. Exercise training upregulates macrophage MKP-1 and affects immune responses in mice [J]. Med Sci Sports Exerc, 2010, 42(12):2173-2179.[33] Masao Doi, Sehyung Cho, Irene Yujnovsky, et al. Light-inducible and clock-controlled expression of MAP kinase phosphatase1 in mouse central pacemaker neurons [J].Biol Rhythms, 2007, 22(2):127-139.[34] Freddy Jeanneteau, Katrin Deinhardt. Fine-tuning MAPK signaling in the brain: the role of MKP-1[J]. Commun Integr Biol, 2011, 4(3):281–283.[35] C Glorioso, M Sabatini, T Unger, et al. Specificity and timing of neocortical transcriptome changes in response to BDNF gene ablation during embryogenesis or adulthood[J] .Mol Psychiatry, 2006, 11(7):633-48.[36] Cecilia Conde, Alfredo Caceres. Microtubule assembly, organization and dynamics in axons and dendrites[J]. Nat Rev Neurosci, 2009, 10:319-332.[37] Emmanuel Valjent, Jocelyne Caboche, Pater Vanhoutte. Mitogen-activated protein kinase/extracellular signal-regulated kinase induced gene regulation in brain[J]. Mol Neurobiol, 2001, 23(2):83–99.[38] Vanja Duric, Mounira Banasr, Pawel Licznerski, et al. A negative regulator of MAP kinase causes depressive behavior [J]. Nat Med, 2010, 16(11): 1328–1332.[39] Mark Kristiansen, Rosie Hughes, Pritika Patel, et al. Mkp1 is a c-Jun target gene that antagonizes JNK dependent apoptosis in sympathetic neurons [J]. Neurosci, 2010, 30(32): 10820–10832.[40] Eva Eljaschewitsch, Anke Witting, Christian Mawrin, et al. The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells[J]. Neuron, 2006, 49(1):67–79. [41] Zhang Yong-liang, Joseph Reynolds, Seon Hee Chang, et al. MAP kinase phosphatase 1 is necessary for T cell activation and function [J]. Biol Chem, 2009, doi: 10.1074/jbc.M109.052472.[42] Christian Ndong, Russell P Landry, Joyce A DeLeo, et al. Mitogen activated protein kinase phosphatase-1 prevents the development of tactile sensitivity in a rodent model of neuropathic pain[J]. Molecular Pain, 2012, 8:34.[43] David M Taylor, Roger Moser, Etienne Regulier, et al. MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington’s disease via additive effects of JNK and p38 inhibition[J]. J Neurosci, 2013, 33(6):2313–2325.[44] Louise M Collins, Gerard W O Keeffe, Caitriona M Long-Smith, et al. Mitogen-activated protein kinase phosphatase (MKP)-1 as a neuroprotective agent: promotion of the morphological development of midbrain dopaminergic neurons[J]. Neuromolecular Med, 2013, 15(2):435–446.[45] Jaekyoon Kim, Jiyoung Kim, Jaesung Shim, et al. Licorice-derived dehydroglyasperin C increases MKP-1 expression and suppresses inflammation-mediated neurodegeneration [J]. Neurochem Int, 2013, 63(8):732-740 .[46] Marina A Lynch. Age-related impairment in long-term potentiation in hippocampus: a role for the cytokine, interleukin-1b[J]. Prog Neurobiol, 1998, 56(5): 571–589.[47] Shunsuke Koga, Shunsuke Kojima, Takashi Kishimoto. Over-expression of map kinase phosphatase-1 (MKP-1) suppresses neuronal death through regulating JNK signaling in hypoxia/re-oxygenation[J].Brain Reach, 2012, 1436:137–146.[48] Russell P Landry, Elena Martinez, Joyce A DeLeo, et al. Spinal cannabinoid receptor type 2 agonist reduces mechanical allodynia and induces mitogen-activated protein kinase phosphatases in a rat model of neuropathic pain[J]. J Pain, 2012, 13(9): 836–848.[49] Ryan J Cady, Jennifer E Denson, Paul L Durham. Inclusion of cocoa as a dietary supplement represses expression of inflammatory proteins in spinal trigeminal nucleus in response to chronic trigeminal nerve stimulation [J]. Mol Nutr Food Res, 2013, 57(6): 996–1006.[50] Chen Mei-Feng, Huang Tung-Yi, Kuo Yu-Min, et al. Early postinjury exercise reverses memory deficits and retards the progression of closed-head injury in mice[J]. J Physiol, 2013, 591(Pt 4):985–1000. |
[1] | 谢彬, 黄志源, 林多朵, 杨福龙, 谢奕彬. 针药结合干预阿尔茨海默病抑郁症状效果分析[J]. 神经药理学报, 2020, 10(5): 5-8. |
[2] | 莫翠英, 骆国平. 尼麦角林联合曲舍林及心理治疗对脑卒中后抑郁患者抑郁情绪的影响[J]. 神经药理学报, 2020, 10(2): 7-10. |
[3] | 付至江, 高云,张伟,等. 抑郁症对大鼠骨折愈合的影响的实验研究[J]. 神经药理学报, 2018, 8(6): 1-8. |
[4] | 曾菊,程斌,程肖蕊,周文霞,张永祥. 基于LPS 诱导小鼠炎症模型的LW-AFC 抗炎作用研究[J]. 神经药理学报, 2018, 8(2): 49-49. |
[5] | 肖 婷,马天阳, 徐祥清, 王克威. 大鼠慢性不可预测温和应激与小鼠社会挫败抑郁症模型的建立与行为学评价[J]. 神经药理学报, 2018, 8(1): 45-53. |
[6] | 昝桂影,孙翔, 李庆林, 刘景根 . κ阿片受体在抑郁中的作用及机制研究进展[J]. 神经药理学报, 2018, 8(1): 54-64. |
[7] | 梁慧,程涛,梁建辉. 焦虑抑郁共病障碍的研究进展[J]. 神经药理学报, 2017, 7(6): 30-35. |
[8] | 张阔,杨静玉,吴春福. 抑郁症的病理生理学基础及动物模型研究进展[J]. 神经药理学报, 2017, 7(4): 8-16. |
[9] | 任倩,王真真,陈乃宏. MicroRNA调控神经可塑性在抑郁症中作用研究进展[J]. 神经药理学报, 2017, 7(3): 12-20. |
[10] | 邹征强,程玉芳,汪海涛,周中振,陈佳佳,冯红方,徐江平. PDE4 抑制剂FCPR03 对LPS 诱导小鼠抑郁样行为的改善作用及其机制研究[J]. 神经药理学报, 2017, 7(3): 43-43. |
[11] | 詹向红*,刘永,宋萍,韩贺云,潘玉颖,孙前明. 轻中度抑郁症患者认知功能损伤的事件相关电位研究[J]. 神经药理学报, 2017, 7(3): 52-52. |
[12] | 钟秋萍,钟佳宏,余汇,程玉芳,汪海涛,徐江平*. 新型PDE4抑制剂FCPR16的抗抑郁作用及机制研究[J]. 神经药理学报, 2017, 7(3): 57-57. |
[13] | 杜贯涛,林井然,刘广军,洪浩. 阿尔茨海默病与抑郁症共病研究进展[J]. 神经药理学报, 2016, 6(6): 40-44. |
[14] | 曹利华,白明,方晓艳,王灿,苗明三. 基于临床病症特点的抑郁症动物模型分析[J]. 神经药理学报, 2016, 6(4): 19-23. |
[15] | 张小玲,王真真,温路,邵千航,陈乃宏. 细胞因子与抑郁症关系的研究进展[J]. 神经药理学报, 2016, 6(4): 31-36. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||