神经药理学报 ›› 2011, Vol. 1 ›› Issue (6): 37-47.
薛小燕1 ,郭小华2 ,李敏3 ,罗焕敏4
出版日期:
2011-12-26
发布日期:
2013-04-25
通讯作者:
罗焕敏,男,教授;研究方向:神经药理学;Tel/Fax:+86-020-85220263,E-mail:tlhm@jnu.edu.cn
作者简介:
薛小燕,女,硕士;研究方向:药学;E-mail:xuexiaoyan816@sina.com
基金资助:
国家自然科学基金项目(No.30672450),广东省科技计划项目(No.2010B030700018)
XUE Xiao-yan1, GUO Xiao-hua2, LI-Min3, LUO Huan-min4
Online:
2011-12-26
Published:
2013-04-25
Contact:
罗焕敏,男,教授;研究方向:神经药理学;Tel/Fax:+86-020-85220263,E-mail:tlhm@jnu.edu.cn
About author:
薛小燕,女,硕士;研究方向:药学;E-mail:xuexiaoyan816@sina.com
Supported by:
国家自然科学基金项目(No.30672450),广东省科技计划项目(No.2010B030700018)
摘要: 阿尔茨海默病(Alzheimer’s disease,AD)病因及发病机制尚未完全阐明,有关其发病机制有β-淀粉样蛋白假说、Tau蛋白假说、炎症学说和氧化应激学说等多种。本文就现有较公认的发病机制研究进展作一综述。
中图分类号:
薛小燕, 郭小华, 李敏, 罗焕敏. 阿尔茨海默病发病机理的研究进展[J]. 神经药理学报, 2011, 1(6): 37-47.
XUE Xiao-yan, GUO Xiao-hua, LI-Min, LUO Huan-min. Progress in Understanding the Pathogenesis of Alzheimer’s Disease[J]. ACTA NEUROPHARMACOLOGICA, 2011, 1(6): 37-47.
[1] Daniel P Perl . Neuropathology of Alzheimer's disease[J]. Mt Sinai J Med, 2010, 77(1): 32-42.[2] Lockhart C, Klimov DK. Molecular Interactions of Alzheimer's biomarker FDDNP with a beta peptide[J]. Biophysical, 2012, 103(11): 2341-2351.[3] Ding Hao, Joseph A Schauerte, Duncan G Steel, et al. Beta-amyloid (1-40) peptide interactions with supported phospholipid membranes: a single-molecule study[J]. Biophys J, 2012, 103(7): 1500-1509.[4] Ahmadul Kadir , Ove Almkvist , Anton Forsberg , et al. Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer's disease[J]. Neurobiol Aging, 2012, 33(1): 198.e1-14.[5] Ashley S Bangert, David A Balota. Keep up the pace: declines in simple repetitive timing differentiate healthy aging from the earliest stages of Alzheimer's disease[J]. J Int Neuropsychol Soc, 2012, 18(6): 1052-1063.[6] Simom F Eskildsen, Pierrick Coupe, Daniel Garcia-Lorenzo, et al. Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning[J]. Neuroimage, 2012, 65: 511-521.[7] Adrienne Dorr, Bhupinder Sahota, Lakshminarayan V Chinta, et al. Amyloid-beta-dependent compromise of microvascular structure and function in a model of Alzheimer's disease[J]. Brain, 2012, 135(10): 3039-3050.[8] Vincent T Marchesi. Alzheimer's disease 2012 the great amyloid gamble[J]. Am J Pathol, 2012, 180(5): 1762-1767.[9] Christopher M Acker, Stefanie K Forest, Ray Zinkowski, et al. Sensitive quantitative assays for Tau and phospho-Tau in transgenic mouse models[J]. Neurobiol Aging, 2013, 34(1): 338-350.[10] Dennis J Selkoe. Alzheimer's disease: genes, proteins, and therapy[J]. Physiolo Rev, 2001, 81(2): 741-766.[11] Priscilla Mortera, Suzana Herculano-Houzel. Age-related neuronal loss in the rat brain starts at the end of adolescence[J].Front Neuroanat, 2012, 6: 45.[12] Kordower JH, Chu Y, Stebbins GT, et al. Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment[J]. Ann Neurol, 2001, 49(2): 202-213.[13] Capetillo-Zarate E, Gracia L, Tampellini D, et al. Intraneuronal a beta accumulation, amyloid plaques, and synapse pathology in Alzheimer's disease[J]. Neurodegener Dis, 2012, 10(1-4): 56-59.[14] Marcello E, Epis R, Saraceno C, et al. Synaptic dysfunction in Alzheimer's disease[M]. Synaptic Plasticity:Dynamics,Development and Disease, 2012: 573-601.[15] Jaime Grutzendler, Kathryn Helmin, Julia Tsai, et al. Various dendritic abnormalities are associated with fibrillar amyloid deposits in Alzheimer's disease[J]. Ann N Y Acad Sci, 2007, 1097: 30-39.[16] Selkoe DJ. Alzheimer's disease is a synaptic failure[J]. Science, 2002, 298(5594): 789-791.[17] Eikelenboom P, Veerhuis R, Familian A, et al. Neuroinflammation in plaque and vascular beta-amyloid disorders: clinical and therapeutic implications[J]. Neurodegener Dis, 2008, 5(3-4): 190-193.[18] Robert Veerhuis, Marielle J Van Breemen, Jeroen J Hoozemans, et al. Amyloid beta plaque-associated proteins C1q and SAP enhance the Abeta1-42 peptide-induced cytokine secretion by adult human microglia in vitro[J]. Acta Neuropathol, 2003, 105(2): 135-144.[19] Nady Braidy, Pablo Munoz, Adrian G Palacios, et al. Recent rodent models for Alzheimer's disease: clinical implications and basic research[J]. J Neural Transm, 2012, 119(2): 173-195.[20] Charles Duyckaerts, Benoit Delatour, Marie Claude Potier. Classification and basic pathology of Alzheimer disease[J]. Acta Neuropathol, 2009, 118(1): 5-36.[21] Jose Julio Rodriguez , Harun N Noristani , Alexei Verkhratsky . The serotonergic system in ageing and Alzheimer's disease[J]. Prog Neurobiol, 2012, 99(1): 15-41.[22] Jin Kunlin, Alyson L Peel, Xiao Ou Mao, et al. Increased hippocampal neurogenesis in Alzheimer's disease[J]. Proc Natl Acad Sci USA, 2004, 101(1): 343-347.[23] Bettens K, Sleegers K, Van Broeckhoven C. Genetic insights in Alzheimer's disease[J]. Lancer Neurol, 2013, 12(1): 92-104.[24] Driscoll I, Troncoso J. Asymptomatic Alzheimer's disease: a prodrome or a state of resilience?[J]. Curr Alzheimer Res, 2011, 8(4): 330-335.[25] 罗焕敏,宿宝贵,张冀民. 突变型早老素与Alzheimer病[J]. 中华老年医学杂志, 2000, 19(05): 391-393.[26] Kukull WA, Bowen JD. Dementia epidemiology[J]. Med Clin North Am, 2002, 86(3): 573-590.[27] Yang Gou-bing, Li Ze-rong, Rao Han-bing, et al. Classification models for acetylcholinesterase inhibitors based on machine learning methods[J]. Acta Physico-Chimica Sinica, 2010, 26(12): 3351-3359.[28] 肖飞,罗焕敏. 靶向β和γ分泌酶治疗阿尔茨海默病的研究进展[J]. 国外医学(药学分册), 2002, 29(05): 272-278.[29] John E Morley, Susan A Farr. Hormesis and Amyloid-beta protein: physiology or pathology?[J]. J Alzheimers Dis, 2012, 29(3): 487-492.[30] Whitson JS, Glabe CG, Shintani E, et al. Beta-amyloid protein promotes neuritic branching in hippocampal cultures[J]. Neurosci Lett, 1990, 110(3): 319-324.[31] Etcheberrigaray R, Ito E, Kim CS, et al. Soluble beta-amyloid induction of Alzheimer's phenotype for human fibroblast K+ channels[J]. Science, 1994, 264(5156): 276-279.[32] FKamenetz, TTomita, HHsieh, et al. APP processing and synaptic function[J]. Neuron, 2003, 37(6): 925-937.[33] Pike CJ, Walencewicz AJ, Glabe CG, et al. Aggregation-related toxicity of synthetic beta-amyloid protein in hippocampal cultures[J]. Eur J Pharmacol, 1991, 207(4): 367-368.[34] Pike CJ, Walencewicz AJ, Glabe CG, et al. In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity[J]. Brain Res, 1991, 563(1-2): 311-314.[35] Olson RE, Copeland RA, Seiffert D. Progress towards testing the amyloid hypothesis: inhibitors of APP processing[J]. Curr Opin Drug Discov Devel, 2001, 4(4): 390-401.[36] John A Hardy, Gerald A Higgins. Alzheimer's disease: the amyloid cascade hypothesis[J]. Science, 1992, 256(5054): 184-185.[37] Eliezer Masliah, Abbyann Sisk, Margaret Mallory, et al. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer's disease[J]. J Neurosci, 1996, 16(18): 5795-5811.[38] Terry RD, Masliah E, Salmon DP, et al. Physical basis of cognitive alterations in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment[J]. Ann Neurol, 1991, 30(4): 572-580.[39] Lennart Mucke, Eliezer Masliah, Gui-Qiu Yu, et al. High-level neuronal expression of abeta 1-42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation[J]. J Neurosci, 2000, 20(11): 4050-4058.[40] Barten DM, Guss VL, Corsa JA, et al. Dynamics of {beta}-amyloid reductions in brain, cerebrospinal fluid, and plasma of {beta}-amyloid precursor protein transgenic mice treated with a {gamma}-secretase inhibitor[J]. J Pharmacol Exp Ther, 2005, 312(2): 635-643.[41] Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins[J]. Proc Natl Acad Sci USA, 1998, 95(11): 6448-6453.[42] Dominic M Walsh, Dean M Hartley, Yoko Kusumoto, et al. Amyloid beta-protein fibrillogenesis. structure and biological activity of protofibrillar intermediates[J]. J Biol Chem, 1999, 274(36): 25945-25952.[43] Gong Yuesong, Chang Lei, Kirsten L Viola, et al. Alzheimer's disease-affected brain: presence of oligomeric a beta ligands (ADDLs) suggests a molecular basis for reversible memory loss[J]. Proc Natl Acad Sci USA, 2003, 100(18): 10417-10422.[44] Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics[J]. Science, 2002, 297(5580): 353-356.[45] Pascale N Lacor, Maria C Buniel, Lei Chang, et al. Synaptic targeting by Alzheimer's-related amyloid beta oligomers[J]. J Neurosci, 2004, 24(45): 10191-10200.[46] Jonathan J Sabbagh, Jefferson W Kinney, Jeffrey L Cummings. Animal systems in the development of treatments for Alzheimer's disease: challenges, methods, and implications [J]. Neurobiol Aging, 2013, 34(1): 169-183.[47] James P Cleary, Dominic M Walsh, Jacki J Hofmeister, et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function[J]. Nat Neurosci, 2005, 8(1): 79-84.[48] Townsend Matthew, Shankar Ganesh M, Mehta Tapan, et al. Effects of secreted oligomers of amyloid beta-protein on hippocampal synaptic plasticity: a potent role for trimers[J]. J Physiol, 2006, 572(Pt 2): 477-492.[49] Ganesh M Shankar , Shaomin Li , Tapan H Mehta , et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory[J]. Nat Med, 2008, 14(8): 837-842.[50] Dennis J Selkoe. Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior[J]. Behav Brain Res, 2008, 192(1): 106-113.[51] Nimmrich V, Grimm C, Draguhn A, et al. Amyloid beta oligomers (A beta(1-42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents[J]. J Neurosci, 2008, 28(4): 788-797.[52] Resende R, Ferreiro E, Pereira C, et al. Neurotoxic effect of oligomeric and fibrillar species of amyloid-beta peptide 1-42: involvement of endoplasmic reticulum calcium release in oligomer-induced cell death[J]. Neuroscience, 2008, 155(3): 725-737.[53] Johnson Gail VW, Stoothoff William H. Tau phosphorylation in neuronal cell function and dysfunction[J]. J Cell Sci, 2004, 117(Pt 24): 5721-5729.[54] Rosenberg KJ, Ross JL, Feinstein HE, et al. Complementary dimerization of microtubule-associated Tau protein: Implications for microtubule bundling and Tau-mediated pathogenesis[J]. Proc Natl Acad Sci USA, 2008, 105(21): 7445-7450.[55] Mohandas E, Rajmohan V, Raghunath B. Neurobiology of Alzheimer's disease[J]. Indian J Psychiatry, 2009, 51(1): 55-61.[56] Goedert Michel, Jakes Ross. Mutations causing neurodegenerative tauopathies[J]. Biochim Biophys Acta, 2005, 1739(2-3): 240-250.[57] Babu Jeganathan Ramesh, Geetha Thangiah, Wooten Marie W. Sequestosome 1/p62 shuttles polyubiquitinated Tau for proteasomal degradation[J]. J Neurochem, 2005, 94(1): 192-203.[58] Maile R Brown, Vimala Bondada, Jeffery N Keller, et al. Proteasome or calpain inhibition does not alter cellular Tau levels in neuroblastoma cells or primary neurons[J]. J Alzheimers Dis, 2005, 7(1): 15-24.[59] Zipp Frauke, Aktas Orhan. The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases[J]. Trends Neurosci, 2006, 29(9): 518-527.[60] Eikelenboom P, Veerhuis R, Scheper W, et al. The significance of neuroinflammation in understanding Alzheimer's disease[J]. J Neural Transm, 2006, 113(11): 1685-1695.[61] Salminen A, Ojala J, Kauppinen A, et al. Inflammation in Alzheimer's disease: Amyloid-[beta] oligomers trigger innate immunity defence via pattern recognition receptors[J]. Prog Neurobiol, 2009, 87(3): 181-194.[62] Gorlovoy P, Larionov S, Pham TT, et al. Accumulation of Tau induced in neurites by microglial proinflammatory mediators[J]. FASEB J, 2009, 23(8): 2502-2513.[63] Bonda David J, Wang Xing Long, Perry Geogre, et al. Oxidative stress in Alzheimer disease: A possibility for prevention[J]. Neuropharmacology, 2010, 59(4-5): 290-294.[64] Stefani Massimo. Structural features and cytotoxicity of amyloid oligomers: Implications in Alzheimer's disease and other diseases with amyloid deposits[J]. Prog Neurobiol, 2012, 99(3): 226-245.[65] Yamamoto Akira, Shin Ryong-Woon, Hasegawa Kazuhiro, et al. Iron (III) induces aggregation of hyperphosphorylated Tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer's disease[J]. J Neurochem, 2002, 82(5): 1137-1147.[66] Exley Christopher. Aluminium and iron, but neither copper nor zinc, are key to the precipitation of beta-sheets of Abeta_{42} in senile plaque cores in Alzheimer's disease[J]. J Alzheimers Dis, 2006, 10(2-3): 173-177.[67] Adeela Kamal, Angels Almenar-Queralt, James F LeBlanc, et al. Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP[J]. Nature, 2001, 414(6864): 643-648.[68] Gorazd B Stokin, Concepcion Lillo, Tomas L Falzone, et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease[J]. Science, 2005, 307(5713): 1282-1288.[69] 肖飞,罗焕敏. 淀粉样前体蛋白结构和功能的研究进展[J]. 中国老年学杂志, 2009, 29(23): 3144-3147.[70] O'Brien JT, Erkinjuntti T, Reisberg B, et al. Vascular cognitive impairment[J]. Lancet Neurol, 2003, 2(2): 89-98.[71] Deane Rashid, Berislav V Zlokovic. Role of the blood-brain barrier in the pathogenesis of Alzheimer's disease[J]. Curr Alzheimer Res, 2007, 4(2): 191-197. |
[1] | 谢彬, 黄志源, 林多朵, 杨福龙, 谢奕彬. 针药结合干预阿尔茨海默病抑郁症状效果分析[J]. 神经药理学报, 2020, 10(5): 5-8. |
[2] | 赵雨薇, 甄艳杰, 戴月英, 沈丽霞. 槲皮素对阿尔茨海默症神经保护作用研究[J]. 神经药理学报, 2020, 10(5): 55-64. |
[3] | 海吉涛, 罗焕敏. 病原微生物与阿尔茨海默病相关性研究进展[J]. 神经药理学报, 2020, 10(4): 58-64. |
[4] | 杨旭华, 杜爽, 沈丽霞, 郝军荣. 阿尔茨海默病的药物治疗研究进展[J]. 神经药理学报, 2020, 10(3): 47-53. |
[5] | 甄艳杰, 郭童林, 赵雨薇, 沈丽霞. 植物雌激素介导线粒体途径对阿尔茨海默病神经保护作用的研究进展[J]. 神经药理学报, 2020, 10(1): 40-46. |
[6] | 杨琳,艾静. 脑源雌激素在阿尔茨海默病中的作用研究进展[J]. 神经药理学报, 2019, 9(5): 50-64. |
[7] | 张帅,艾静. 谷氨酸功能异常与阿尔茨海默病[J]. 神经药理学报, 2018, 8(6): 9-20. |
[8] | SHEN li-xia1,LIU Liang-liang1,ZHANG Ming1,LIU Yang1,ZHANG Dan-shen 2*. Research of Quercetin’s Estrogen-Like Action on Central Nervous System and Its Mechanisms[J]. 神经药理学报, 2018, 8(4): 23-25. |
[9] | 黄蕊,杨翠翠,张兰. 二苯乙烯苷对APP/PS1 双转基因小鼠学习记忆及突触可塑性的影响[J]. 神经药理学报, 2018, 8(2): 31-31. |
[10] | 雷曦,王健辉,程肖蕊,张小锐,刘港,周文霞,张永祥. 基于快速老化模型小鼠SAMP8 的CA-30 抗阿尔茨海默病的作用研究[J]. 神经药理学报, 2018, 8(2): 50-50. |
[11] | 王健辉,程肖蕊,张小锐,刘港,周文霞,张永祥. 药物组合吲哚美辛与阿托伐他汀对阿尔茨海默病的治疗作用研究[J]. 神经药理学报, 2018, 8(2): 52-52. |
[12] | 王静,程肖蕊,周文霞,张永祥. 快速老化模型小鼠海马囊泡谷氨酸转运体表达与兴奋性毒性关系的研究[J]. 神经药理学报, 2018, 8(2): 53-53. |
[13] | 张林,蒋宁,周文霞,张永祥. 疾病特异性诱导性多功能干细胞AD 模型建立[J]. 神经药理学报, 2018, 8(2): 54-54. |
[14] | 郭鹏,张巍. 阿尔茨海默病患者睡眠障碍及其与认知障碍关系的研究[J]. 神经药理学报, 2018, 8(2): 61-61. |
[15] | 连腾宏,李少武,余秋瑾,等. 阿尔茨海默病伴发嗅觉障碍的临床特点及静息态功能核磁共振成像的研究[J]. 神经药理学报, 2018, 8(2): 62-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||