神经药理学报 ›› 2012, Vol. 2 ›› Issue (6): 40-48.
郑立卿
出版日期:
2012-12-26
发布日期:
2014-06-27
作者简介:
郑立卿,女,博士,副教授,研究方向:神经药理,Tel:0313-4029305, E-mail:lqzheng@126.com
基金资助:
河北省卫生厅医学科学研究重点课题计划(No. 20110173)河北省高等学校科学技术研究优秀青年基金项目(YQ2014008)
ZHEN Li-qing
Online:
2012-12-26
Published:
2014-06-27
About author:
郑立卿,女,博士,副教授,研究方向:神经药理,Tel:0313-4029305, E-mail:lqzheng@126.com
Supported by:
河北省卫生厅医学科学研究重点课题计划(No. 20110173)河北省高等学校科学技术研究优秀青年基金项目(YQ2014008)
摘要: GABAA受体介导中枢神经递质GABA产生快速抑制反应,是治疗焦虑障碍、失眠和麻醉重要药物靶点。但是长期使用这些药物,可产生耐受和成瘾发生的风险。机制可能为引起大脑反馈回路的异常神经适应。目前,已证明苯二氮?类作用的突触GABAA受体和突触外GABAA受体的调节剂(THIP和神经甾体)已证明可以诱发腹侧被盖区多巴胺神经元的可塑性。此外,不同突触或突触外GABAA受体激活的数量和重复用药均与神经调节的奖励和厌恶反应(reward and aversion)相关。作用于突触和突触外GABAA受体的药物均可抑制VTA的GABAA能中间神经元,从而激活VTA区DA能神经元,由此去抑制和诱导谷氨酸能神经的突触可塑性。尽管此类药物未能改变突触棘数量,却能抑制脑代谢和基因表达,其诱导成熟神经元的神经可塑性的可能方式是:解除主要神经元抑制作用;这一观点仍有待验证。
郑立卿 . 作用于GABAA受体的药物与神经可塑性[J]. 神经药理学报, 2012, 2(6): 40-48.
ZHEN Li-qing. GABAA Receptor Drugs and Neuronal Plasticity[J]. Acta Neuropharmacologica, 2012, 2(6): 40-48.
[1] Laura Huopaniemi, Ruth Keist, Ann Randolph, et al. Diazepam-induced adaptive plasticity revealed by alpha1 GABAA receptor-specific expression profiling[J]. J Neurochem, 2004, 88(5): 1059-1067.[2] Kulisch C, Eckers N, Albrecht D. Method of euthanasia affects amygdala plasticity in horizontal brain slices from mice[J]. J Neurosci Methods, 2011, 201(2):340-345.[3] Piao M H, Liu Y, Wang Y S,et al. Volatile anesthetic isoflurane inhibits LTP induction of hippocampal CA1 neurons through α4β2 nAChR subtype-mediated mechanisms[J].Ann Fr Anesth Reanim, 2013, 32(10): e135-141.[4] Wu Xue-fei, Eero Castrén. Co-treatment with diazepam prevents the effects of fluoxetine on the proliferation and survival of hippocampal dentate granule cells[J].Biol Psychiatry, 2009, 66(1):5-8.[5] Diana M Erasso, Enrico Camporesi, Devanand Mangar, et al. Effects of isoflurane or propofol on postnatal hippocampal neurogenesis in young and aged rats[J].Brain Res, 2013,1530:1-12.[6] Thal S C, Timaru-Kast R, Wilde F, et al. Propofol impairs neurogenesis and neurologic recovery and increases mortality rate in adult rats after traumatic brain injury[J].Crit Care Med, 2014, 42(1):129-141.[7] Hensch T K, Stryker M P. Columnar architecture sculpted by GABA circuits in developing cat visual cortex[J].Science, 2004, 303(5664):1678–1681.[8] Panhelainen A E, Korpi E R. Evidence for a role of inhibition of orexinergic neurons in the anxiolytic and sedative effects of diazepam: A c-Fosstudy[J].Pharmacol Biochem Behav, 2012, 101(1):115-124.[9] Anne E Heikkinen, Tommi P Möykkynen, Esa R Korpi. Long-lasting modulation of glutamatergic transmission in VTA dopamine neurons after a single dose of benzodiazepine agonists[J].Neuropsychopharmacology, 2009, 34(2):290-298.[10] Kelly R Tan, Matthew Brown, Gwenael Labouèbe, et al. Neural bases for addictive properties of benzodiazepines[J].Nature, 2010, 463(7282):769-774.[11] Elena Vashchinkina, Anne Panhelainen, O Yu Vekovischeva, et al. GABA site agonist gaboxadol induces addiction-predicting persistent changes in ventral tegmental area dopamine neurons but is not rewarding in mice or baboons[J].J Neurosci, 2012, 32(15):5310-5320.[12] Esa R Korpi, Gerhard Gründer, Hartmut Lüddens. Drug interactions at GABA(A) receptors[J].Prog Neurobiol, 2002, 67(2):113-159.[13] Stephen Paul Alexander, Helen E Benson, Elena Faccenda, et al. The concise guide to pharmacology 2013/14: ligand-gated ion channels[J].Br J Pharmacol, 2013, 170(8):1582-1606.[14] Ruth M McKernan, Paul J Whiting. Which GABAA-receptor subtypes really occur in the brain? [J].TrendsNeurosci, 1996, 19(4):139-143.[15] Richard W Olsen, Werner Sieghart. GABAA receptors: subtypes provide diversity of function and pharmacology[J].Neuropharmacology, 2009, 56(1):141-148[16] Mikko Uusi-Oukari, Esa R Korpi. Regulation of GABA(A) receptor subunit expression by pharmacological agents[J].Pharmacol Rev, 2010, 62(1):97-135.[17] Florence Crestani, Matthias Lorez, Baer K, et al. Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues[J]. Nat Neurosci, 1999, 2(9):833-839.[18] Uwe Rudolph, Hanns Möhler. Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics[J].Annu Rev Pharmacol Toxicol. 2004; 44:475-498.[19] Chrietian Grasshoff, Uwe Rudolph, Bernd Antkowiak. Molecular and systemic mechanisms of general anaesthesia: the 'multi-site and multiple mechanisms' concept[J]. Curr Opin Anaesthesiol, 2005, 18(4): 386-391.[20] Robert M Mihalek, Pradeep K Banerjee, Esa R Korpi, et al. Attenuated sensitivity to neuroactive steroids in gamma-aminobutyrate type A receptor delta subunit knockout mice[J].Proc Natl Acad Sci USA, 1999, 96(22): 12905-12910.[21] Vashchinkina E, Manner A K, Vekovischeva O, et al. Neurosteroid agonist at GABAA receptor induces persistent neuroplasticity in VTA dopamine neurons[J].Neuropsychopharmacology, 2014, 39(3):727-737.[22] Canet J, Raeder J, Rasmussen L S, et al. Cognitive dysfunction after minor surgery in the elderly[J].Acta Anaesthesiol Scand, 2003, 47(10):1204-1210.[23] Stanton Newman, Jan Stygall, Shashi Hirani, et al. Postoperative cognitive dysfunction after noncardiac surgery: a systematic review[J].Anesthesiology, 2007, 106(3):572-590.[24] Jevtovic-Todorovic V, Absalom A R, Klas Blomgren, et al. Anaesthetic neurotoxicity and neuroplasticity: an expert group report and statement based on the BJA Salzburg Seminar[J].Br J Anaesth, 2013, 111(2): 143-151.[25] Stephanie C Licata, James K Rowlett. Abuse and dependence liability of benzodiazepine-type drugs: GABA(A) receptor modulation and beyond[J].Pharmacol Biochem Behav, 2008, 90(1):74-89.[26] Sara K S Bengtsson, Maja Johansson, Torbjorn Bäckström, et al. Chronic allopregnanolone treatment accelerates Alzheimer's disease development in Aβ PP(Swe)PSEN1(ΔE9) mice[J].J Alzheimers Dis, 2012, 31(1):71-84.[27] Sara K S Bengtsson, Maja Johansson, Torbjorn Backstrom, et al. Brief but chronic increase in allopregnanolone cause accelerated AD pathology differently in two mouse models[J].Curr Alzheimer Res, 2013, 10(1):38-47.[28] Volkow N D, Baler R D. Addiction science: uncovering neuro biological complexity[J]. Neuropharmacology, 2014, 76(Pt B): 235–249.[29] Charles P O’Brien. Benzodiazepineuse, abuse, and dependence[J]. J. Clin Psychiatry, 2005, 66(Suppl 2): 28–33.[30] Kelly R Tan, Matthew Brown, Gwenael Labouebe, et al. Neural bases for addictive properties of benzodiazepines[J]. Nature, 2010, 463(7282): 769–774. [31] Christina Spyraki, Anna Kazandjian, Denis Varonos. Diazepam-induced place preference conditioning: appetitive and antiaversive properties[J]. Psychopharmacology, 1985, 87(2): 225–232.[32] Carolin J Straub, William A Carlezon Jr, Uwe Rudolph. Diazepam and cocaine potentiate brain stimulation reward in C57BL/6Jmice[J]. Behav Brain Res, 2010, 206(1): 17–20. [33] Nancy A Ator. Relation between discriminative and reinforcing effects of midazolam, pentobarbital, chlordiazepoxide, zolpidem, and imidazenil in baboons[J]. Psychopharmacology, 2002, 163(3-4): 477–487.[34] Esa Meririnne, Aino Kankaanpaa, Pirjo Lillsunde, et al. The effects of diazepam and zolpidemon cocaine-and amphetamine-induced place preference. [J]. Pharmacol Biochem Behav, 1999, 62(1): 159–164.[35] Elif Engin, Konstantin I Bakhurin, Kiersten S Smith, et al. Neural basis of benzodiazepine reward: requirement for alpha 2 contain-ing GABAA receptors in the nucleusaccumbens[J]. Neuropsychopharmacology, 2014, 39(8): 1805–1815. [36] Rachna S Sinnott, Gregory Mark, Deborah A Finn. Reinforcing effects of the neurosteroid allopregnanolone in rats[J]. Pharmacol. Biochem. Behav, 2002, 72(4): 923–929. [37] Eric W Fish, Buddy J Whitman, Jeff F Diberto, et al. Effects of the neuro activesteroid allopregnanolone on intracranial self-stimulation in C57BL/6J Mice[J]. Psychopharmacology, 2014, 231(17): 3415–3423.[38] Finn D A, Phillips T J, Okorn D M, et al. Rewarding effect of the neuro activesteroid 3 alpha-hydroxy-5alpha-pregnan-20-one in mice[J]. Pharmacol. Biochem. Behav, 1997, 56(2): 261–264.[39] Miriam H Beauchamp, Brandi K Ormerod, Khem Jhamandas, et al. Neurosteroids and reward: allopregnanoloneproducesa conditioned place aversion in rats[J]. Pharmacol Biochem Behav, 2000, 67(1): 29–35.[40] Laviolette S R, van der Kooy D. GABAA receptors in the ventral tegmenta larea control bidirectiona l reward signaling between dopaminergic and non-dopaminergic neural motivational systems[J]. Eur J Neurosci, 2001, 13: 1009–1015. [41] Matthew T Brown, Kelly R Tan, Eoin C O’Connor, et al. Ventral tegmental area GABA projection spause accumbal cholinergic interneurons to enhance associative learning[J]. Nature, 2012, 492(7429): 452–456.[42] Pablo E Castillo, Chiayu Q Chiu, Reed C Carroll. Long-term plasticity at inhibitory synapses[J]. Curr Opin Neurobiol, 2011, 21(2): 328–338.[43] Christian Luscher, Robert C Malenka. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuitre modeling[J]. Neuron, 2011, 69(4): 650–663.[44] Dimitri M Kullmann, Alexandre W Moreau, Yamina Bakiri, et al. Plasticity of inhibition[J]. Neuron, 2012, 75(6): 951–962.[45] Gray E G. Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex[J]. Nature, 1959, 183(4675): 1592–1593.[46] Dailey M E, Smith S J. The dynamics of dendritic structure in developing hippocampalslices[J]. J Neurosci, 1996, 16(9): 2983–2994.[47] Heike Hering, Morgan Sheng. Dendritic spines: structure, dynamics and regulation[J]. Nat Rev Neurosci, 2001, 2(12): 880–888.[48] Menahem Segal. Dendritic spines and long-term plasticity[J]. Nat Rev Neurosci, 2005, 6(4): 277–284. [49] Cynthia Lang, Angel Barco, Leonard Zablow, et al. Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation[J]. Proc Natl Acad Sci USA, 2004, 101(47): 16665–16670.[50] Masanori Matsuzaki, Naoki Honkura, Graham C R Ellis-Davies, et al. Structural basis of long-term potentiation in single dendritic spines[J]. Nature, 2004, 429: 761–66. [51] Freund T F, Buzsaki G. Interneurons of the hippocampus[J]. Hippocampus, 1996, 6347–6470.[52] Somogyi P, Tamas G, Lujan R, et al. Salient features of synaptic organisation in the cerebral cortex[J]. Brain Res Brain Res Rev, 1998, 26(2-3):113–135.[53] Heinen K, Baker R E, Spijker S, et al. Impaired dendritic spine maturation in GABAA receptor alpha1sub- unit knockout mice[J]. Neuroscience, 2003, 122(3): 699–705.[54] Tija C Jacob, Wan Qin, Mansi Vithlani, et al. GABAA receptor membrane trafficking regulates spine maturity[J]. Proc Natl Acad Sci USA, 2009, 106: 12500–12505.[55] Masato Higashima, Hiroya Kinoshita, Yoshifumi Koshino. Differences in the effects of zolpidem and diazepamon recurrent inhibition and long-term potentiating in rat hippocam palslices[J]. Neurosci Lett, 1998, 245(2): 77–80.[56] Shen Hui, Nicole Sabaliauskas, Ang Sherpa, et al. Acritical role for α4βδGABAA receptors in shaping learning deficits at puberty in mice[J]. Science, 2010, 327(5972) :1515–1518.[57] Chiayu Chiu, Gyorgy Lur, Thomas M Morse, et al. Compartment alizationo GABA ergic inhibition by dendritic spines[J]. Science, 2013, 340(6133): 759–762.[58] Mansi Vithlani, Miho Terunuma, Stephen J Moss. The dynamic modulationof GABAA receptor trafficking and its role in regulating the plasticity of inhibitory synapses[J]. Physiol Rev, 2011, 91(3):1009–1022.[59] Wierenga C J, Becker N, Bonhoeffer T. GABA ergic synapses are formed without the involvement of dendritic protrusions[J]. Nat Neurosci, 2008, 11(9): 1044–1052. [60] Tarek Z Deeb, Jamie Maguire, Stephen J Moss. Possible alterations in GABAA Receptor signaling that underlie benzodiazepine-resistant seizures[J]. Epilepsia, 2012, 53(Suppl 9): 79–88.[61] Armen M Abramian, Eydith Comenencia-Ortiz, Amit Modgil, et al. Neurosteroids promote phosphorylation and membrane insertion of extrasynaptic GABAA receptors[J]. Proc Natl Acad Sci USA, 2014, 111: 7132–7137.[62] Tija C Jacob, Guido Michels, Liliya Silayeva, et al. Benzodiazepine treatment induces subtype-specific changes in GABAA receptor trafficking and decreases synaptic inhibition[J]. Proc Natl Acad Sci USA, 2012, 109(45): 18595–18600. [63] Van Sickle B J, Xiang K, Tietz E I. Transient plasticity of hippocampal CA1 neuron glutamate receptor s contributes to benzodiazepine withdrawal-anxiety[J]. Neuropsychopharmacology, 2004, 29(11): 1994–2006.[64] Kathleen M Davis, Brianne L Sturt, Andrew J Friedmann, et al. Regulated lysosomal trafficking as a mechanism for regulating GABAA receptor abundance at synapses in Caenorhabditis elegans[J]. Mol Cell Neurosci, 2010, 44(4): 307–317.[65] Mikko Uusi-Oukari, Esa R Korpi. Regulation of GABAA receptor subunit expression by pharmacological agents[J]. Pharmacol.Rev, 2010, 62(1): 97–135.[66] Luddens H, Korpi E R, Seeburg P H. GABAA/benzodiazepine receptor heterogeneity:neuro physiological implications[J]. Neuropharmacology, 1995, 34(3): 245–254. [67] Richard W Olsen, Werner Sieghart. GABAA receptors:subtypes provide diversity of function and pharmacology[J]. Neuropharmacology, 2009, 56(1): 141–148.[68] Jamie L Maguire, Brandon M Stell, Mahsan Rafizadeh, et al. Ovarian cycle-linked changes in GABAA receptors mediating tonic inhibition after seizure susceptibility and anxiety[J]. Nat.Neurosci, 2005, 8(6): 797–804.[69] Shen H.,Sabaliauskas N.,Sherpa A.,et al. Acritical role for α4βδGABAA receptors in shaping learning deficits at puberty in mice[J]. Science .2010,327, 1515–1518.[70] Claudio Rivera, Juha Voipio, John A Payne, et al. The K+/Cl-co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation[J]. Nature, 1999, 397(6716): 251–255.[71] Li Hong, Stanislav Khirug, Cai Chun-lin, et al. KCC2interacts with the dendritic cytoskeleton to promote spine development[J]. Neuron, 2007, 56(6): 1019–1033.[72] Horn Z, Ringstedt T, Blaesse P, et al. Premature expression of KCC2 in embryonic mice perturbs neural development by an ion transport-independent mechanism[J]. Eur J Neurosci, 2010, 31(12): 2142–2155.[73] Sun Chi-cheng, Zhang Lei, Chen Gong. An unexpected role of neuroligin-2 in regulating KCC2 and GABA functional switch[J]. Mol Brain, 2013, 6: 23.[74] Gauvain G, Chamma I, Chevy Q, et al. The neuronal K-Clco transporter KCC2 influences post synaptic AMPA receptor content and lateral diffusion in dendritic spines[J]. Proc Natl Acad Sci USA, 2011, 108(37): 15474–15479.[75] Freund T F, Buzsaki G. Interneurons of the hippocampus[J]. Hippocampus, 1996, 6: 347–470.[76] Somogyi P, Tamas G, Lujan R, et al. Salient features of synaptic organisation in the cerebral cortex[J]. Brain Res Brain Res Rev, 1998, 26(2-3): 113–135.[77] Masahiro Shibasaki, Daiki Masukawa, Kazunori Ishii, et al. Involvement of the K+-Cl- co-transporter KCC2 in the sensitization to morphine-induced hyperlocomotion under chronic treatment with zolpidem in the mesolimbic system[J]. J Neurochem, 2013, 125: 747–755. [78] Laura Modol, Caty Casas, Anna Llido, et al. Neonatal allopregnanolone or finasteride administration modifies hippocampal K Clco-transport erexpression during early development in male rats[J]. J Steroid Biochem Mol Biol, 2014, 143C: 343–347.[79] Lacoh C M, Bodogan T, Kaila K, et al. General anaesthetics do not impair developmental expression of the KCC2 potassium- chloride cotransporter in neonatal rats during the brain growth spurt[J]. Br J Anaesth, 2013, 110(Suppl1): i10–i18.[80] Tae-Cheon Kang, Duk-Soo Kim, Ji-Eun Kim, et al. Altered expression of K+-Cl- co-transporters affects fast paired-pulse inhibition during GABA receptor activation in the gerbil hippocampus[J]. Brain Res, 2006, 1072(1): 8–14. [81] Marika Markkanen, Tuula Karhunen, Olaya Llano, et al. Distribution of neuronal KCC2a and KCC2 bisoforms in mouse CNS[J].J Comp Neurol, 2014, 522: 1897–1914.[82] Richard W Olsen, Werner Sieghart. GABA A receptors: subtypes provide diversity of function and pharmacology[J]. Neuropharmacology, 2009, 56(1): 141-148.[83] Pirker S, Schwarzer C, Wieselthaler A, et al. GABA(A) receptors: immunocyto chemical distribution of 13 subunits in the adult rat brain[J].Neuroscience, 2000, 101(4): 815-850.[84] Heide Hörtnagl, Ramon O Tasan, Anna Wieselthaler, et al. Patterns of mRNA and protein expression for 12 GABAA receptor subunits in the mouse brain[J].Neuroscience, 2013, 236(01): 345-372.[85] Dev Chandra, Lauri M Halonen, Anni-Maija Linden, et al. Prototypic GABA(A) receptor agonist muscimol acts preferentially through forebrain high-affinity binding sites[J].Neuropsychopharmacology, 2010, 35(4): 999-1007.[86] Barbara L Waszczak, Judith R Walters. Intravenous GABA agonist administration stimulates firing of A10 dopaminergic neurons[J].Eur J Pharmacol, 1980, 66(1):141-144.[87] Elena Vashchinkina, Anne Panhelainen, O Yu Vekovischeva, et al. GABA site agonist gaboxadol induces addiction-predicting persistent changes in ventral tegmental area dopamine neurons but is not rewarding in mice or baboons[J]. J Neurosci, 2012, 32(15): 5310-5320.[88] Elena Vashchinkina, Aino K Manner, Olga Vekovischeva, et al. Neurosteroid agonist at GABAA receptor induces persistent neuroplasticity in VTA dopamine neurons[J].Neuropsychopharmacology, 2014, 39(3): 727-737.[89] Anne E Heikkinen, Tommi P Möykkynen, Esa R Korpi. Long-lasting modulation of glutamatergic transmission in VTA dopamine neurons after a single dose of benzodiazepine agonists[J].Neuropsychopharmacology. 2009, 34(2):290-298.[90] Christian Lüscher, Robert C Malenka. Drugevoked synaptic plasticity in addiction: from molecular changes to circuit remodeling[J].Neuron, 2011, 69(4): 650-663.[91] Kelly R Tan, Matthew Brown, Gwenael Labouèbe, et al. Neural bases for addictive properties of benzodiazepines[J].Nature, 2010, 463(7282): 769-774.[92] Elena Vashchinkina, Anne Panhelainen, O Yu Vekovischeva, et al. GABA site agonist gaboxadol induces addiction-predicting persistent changes in ventral tegmental area dopamine neurons but is not rewarding in mice or baboons[J].J Neurosci, 2012, 32(15): 5310-5320.[93] Elena Vashchinkina, Aino K Manner, Olga Vekovischeva, et al. Neurosteroid agonist at GABAA receptor induces persistent neuroplasticity in VTA dopamine neurons[J].Neuropsychopharmacology, 2014, 39(3):727-737.[94] Dev Chandra, Lauri M Halonen, Anni-Maija Linden, et al. Prototypic GABA(A) receptor agonist muscimol acts preferentially through forebrain high-affinity binding sites[J].Neuropsychopharmacology, 2010 ,35(4):999-1007.[95] Sheila M Reynolds, Kent C Berridge. Positive and negative motivation in nucleus accumbens shell: bivalent rostrocaudal gradients for GABA-elicited eating, taste "liking"/"disliking" reactions, place preference/avoidance, and fear[J].J Neurosci, 2002, 22(16):7308-7320. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||