神经药理学报 ›› 2014, Vol. 4 ›› Issue (3): 22-30.
高岩, 楚世峰, 陈乃宏
出版日期:
2014-06-26
发布日期:
2015-01-20
通讯作者:
陈乃宏,男,研究员,博士生导师;研究方向:神经精神药理学;Tex/Fax:010-63165182,010-63165177,E-mail:chennh@imm.ac.cn
作者简介:
高岩,女,博士研究生;研究方向:神经精神药理学;E-mail:gaoyan@imm.ac.cn
基金资助:
国家自然科学基金项目(Nos. 81274122、81102831、81173578、81202507、81273629、81373510),国家“重大新药创制”科技重大专项(Nos. 2012ZX09301002-004、2012ZX09103101-006),国家高技术研究发展计划(863 计划)(No. 2012AA020303),教育部长江学者和创新团队发展计划(PCSIRT)(No. IRT1007),教育部博士点基金重点项目(No. 20121106130001),北京市自然科学基金(Nos. 7131013、7142115),新药作用机制研究与药效评价北京市重点实验室资助项目(No. BZ0150),协和青年基金,中央级公益性科研院所基本科研业务费专项资金(No. 2014RC03)
GAO Yan, CHU Shi-feng, CHEN Nai-hong
Online:
2014-06-26
Published:
2015-01-20
Contact:
陈乃宏,男,研究员,博士生导师;研究方向:神经精神药理学;Tex/Fax:010-63165182,010-63165177,E-mail:chennh@imm.ac.cn
About author:
高岩,女,博士研究生;研究方向:神经精神药理学;E-mail:gaoyan@imm.ac.cn
Supported by:
国家自然科学基金项目(Nos. 81274122、81102831、81173578、81202507、81273629、81373510),国家“重大新药创制”科技重大专项(Nos. 2012ZX09301002-004、2012ZX09103101-006),国家高技术研究发展计划(863 计划)(No. 2012AA020303),教育部长江学者和创新团队发展计划(PCSIRT)(No. IRT1007),教育部博士点基金重点项目(No. 20121106130001),北京市自然科学基金(Nos. 7131013、7142115),新药作用机制研究与药效评价北京市重点实验室资助项目(No. BZ0150),协和青年基金,中央级公益性科研院所基本科研业务费专项资金(No. 2014RC03)
摘要: 氧化应激的产生与胞浆内活性氧簇的升高密切相关,过多生成的活性氧簇能够造成脂质过氧化,损伤蛋白质甚至DNA,而这些物质的受损与疾病发生相关,尤其是神经退行性疾病。神经退行性疾病经常被描述为进行性的神经元丢失,伴随神经元或者胶质细胞中出现标志性寡聚体。在神经退行性疾病中,胶质细胞可能以一种抗氧化应激的方式在神经元功能维持以及生存上发挥重要作用。反之,神经元也能够通过不同途径反馈调节胶质细胞。在这篇综述里,我们主要探讨在亨廷顿舞蹈症中胶质细胞的特点和功能,阐明氧化应激与亨廷顿舞蹈症的关系,概括这三者之间的关系进而论证胶质细胞在亨廷顿舞蹈症中的抗氧化应激保护作用。
中图分类号:
高岩, 楚世峰, 陈乃宏. 亨廷顿舞蹈症、氧化应激与胶质细胞[J]. 神经药理学报, 2014, 4(3): 22-30.
GAO Yan, CHU Shi-feng, CHEN Nai-hong. Glial Cells Protect Neurons against Oxidative Stress in Huntington’s Disease[J]. Acta Neuropharmacologica, 2014, 4(3): 22-30.
[1] Manfred Saran, Wolf Bors. Signalling by O2− and NO: how far can either radical, or any specific reaction product, transmit a message under in vivo conditions? [J]. Chem Biol Interacti, 1994, 90(1): 35-45.[2] Manfred Saran. To what end does nature produce superoxide? NADPH oxidase as an autocrine modifier of membrane phospholipids generating paracrine lipid messengers [J]. Free Radic Res, 2003, 37(10): 1045-1059.[3] K A Sieradzan, D M A Mann, The selective vulnerability of nerve cells in Huntington's disease [J]. Neuropathol Appl Neurobiol, 2001, 27: 1-21.[4] Li Xiao-jiang, Li Shi-hua Large animal models of huntington's disease [J]. Curr Top Behav Neurosci, 2013, 2(1): 3-19.[5] Mahmoud A Pouladi, A Jennifer Morton, Michael R Hayden. Choosing an animal model for the study of Huntington's disease[J]. Nat Rev Neurosci, 2013, 14(10): 708-721.[6] Susan E Browne, M Flint Beal. Oxidative damage in Huntington's disease pathogenesis [J]. Antioxid Redox Signal, 2006, 8(11-12): 2061-2073.[7] Yeun Su Choo, Mao Zheng-kuan, Gavil VW Johnson, et al. Increased glutathione levels in cortical and striatal mitochondria of the R6/2 Huntington's disease mouse model[J]. Neurosci Lett, 2005, 386(1): 63-68.[8] Marie Therese Besson, Pascale Dupont, Yih-Woei C Fridell et al. Increased energy metabolism rescues glia-induced pathology in a Drosophila model of Huntington's disease [J]. Human Molecular Genetics, 2010, 19(17): 3372-3382.[9] Werner J H Koopman, Leo G J Nijtmans, Cindy E J Dieteren, et al. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation [J]. Antioxid Redox Signal, 2010, 12: 1431-1460.[10] Simone Fulda, Adrienne M Gorman, Osamu Hori, et al. Cellular stress responses: cell survival and cell death [J]. Int J Cell Biol, 2010, 2010: 214074.[11] David C Chan. Mitochondria: dynamic organelles in disease, aging, and development [J]. Cell, 2006, 125(7): 1241-1252.[12] Abhishek Chandra, Ashu Johri, M Flint Beal. Prospects for neuroprotective therapies in prodromal Huntington's disease [J]. Mov Disord, 2014, 29(3): 285-293.[13] George E Barreto, Janneth Gonzalez, Yolima Torres, et al. Astrocytic-neuronal crosstalk: implications for neuroprotection from brain injury [J]. Neurosci Res, 2011, 71(2): 107-113.[14] Joana M Gil, Ana Cristina Rego. Mechanisms of neurodegeneration in Huntington's disease [J]. Eur J Neurosci, 2008, 27(11): 2803-2820.[15] Chen Xue-ping, Guo Chun-yan, J Kong. Oxidative stress in neurodegenerative diseases [J]. Neural Regener Res, 2012, 7(5): 376-385.[16] M Alba Sorolla, Gemma Reverter-Branchat, Jordi Tamarit, et al. Proteomic and oxidative stress analysis in human brain samples of Huntington disease [J]. Free Radic Biol Med, 2008, 45(5): 667-678.[17] Alexandra Benchoua, Yael Trioulier, Diana Zala, et al. Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin [J]. Mol Biol Cell, 2006, 17(4): 1652-1663.[18] Tabrizi S J, Cleeter M W, Xuereb J, et al. Biochemical abnormalities and excitotoxicity in Huntington's disease brain [J]. Ann Neurol, 1999, 45(1): 25-32.[19] Browne S E, Bowling A C, MacGarvey U, et al. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia [J]. Ann Neurol, 1997, 41(5): 646-653.[20] Trushina E, McMurray C T. Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases [J]. Neuroscience, 2007, 145(4): 1233-1248.[21] Mikhail B Bogdanov, Robert J Ferrante, Stefan Kuemmerle, et al. Increased vulnerability to 3-nitropropionic acid in an animal model of huntington's disease [J]. J Neurochem, 1998, 71(6): 2642-2644.[22] Peter Klivenyi, Robert J Ferrante, Gabrielle Gardian, et al. Increased survival and neuroprotective effects of BN82451 in a transgenic mouse model of Huntington's disease [J]. J Neurochemistry, 2003, 87(1): 272.[23] Robert J Ferrante, Ole A Andreassen, Alpaslan Dedeoglu, et al. Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of huntington’s disease [J]. J Neuroscience, 2002, 22(5): 1592–1599.[24] Wang-Tso Lee, Chang Chen. Magnetic resonance imaging and spectroscopy in assessing 3-nitropropionic acid-induced brain lesions: an animal model of Huntington's disease [J]. Prog Neurobiol, 2004, 72(2): 87-110.[25] DPhil Elsdon Storey, Neil W Kowall, Stephen F Finn, et al. The cortical lesion of Huntington's disease: further neurochemical characterization, and reproduction of some of the histological and neurochemical features by N-methyl-D-aspartate lesions of rat cortex [J]. Ann Neurol, 1992, 32(4): 526-534.[26] Shilpa Ramaswamy, Jodi L McBride, Jeffrey H Kordower. Animal models of huntington’s disease [J]. ILAR Journal, 2007, 48(4): 356-373.[27] Gyung W Kim, Pak H Chan. Oxidative stress and neuronal DNA fragmentation mediate age-dependent vulnerability to the mitochondrial toxin, 3-nitropropionic acid, in the mouse striatum [J]. Neurobiol Dis, 2001, 8(1): 114-126.[28] Emmanuel Brouillet, Francoise Conde, M F Beal, et al. Replicating huntington's disease phenotype in experimental animals [J]. Prog Neurobiol, 1999, 59(5): 427-468.[29] Michael A La Fontaine, James W Geddes, Andrea Banks, et al. Effect of exogenous and endogenous antioxidants on 3-nitropropionic acid-induced in vivo oxidative stress and striatal lesions: insights into Huntington's disease [J]. J Neurochem, 2000, 75(4): 1709-1715.[30] Gyung W Kim, Jean-Christophe Copin, Makoto Kawase, et al. Excitotoxicity is required for induction of oxidative stress and apoptosis in mouse striatum by the mitochondrial toxin, 3- nitropropionic acid [J]. J Cereb Blood Flow Metab, 2000, 20(1): 119-129.[31] Schulz J B, Matthews R T, Henshaw M F, et al. Neuroprotective strategies for treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseases [J]. Neuroscience, 1996, 71(4): 1043-1048.[32] McCracken E, Dewar D, Hunter A J. White matter damage following systemic injection of the mitochondrial inhibitor 3-nitropropionic acid in rat [J]. Brain Research, 2001, 892(2): 329-335.[33] Isaac Tunez, Inmaculada Tasset, Veronica Perez-De La Cruz, et al. 3-Nitropropionic acid as a tool to study the mechanisms involved in Huntington's disease: past, present and future [J]. Molecules, 2010, 15(2): 878-916.[34] Theodore A Alston, Leena Mela, Harold J Bright. 3-Nitropropionate, the toxic substance of Indigofera, is a suicideinactivator of succinate dehydrogenase [J]. Proc Natl Acad Sci, 1977, 74(9): 3767-3771.[35] Liu W, Tang Y, Feng J. Cross talk between activation of microglia and astrocytes in pathological conditions in the central nervous system [J]. Life Sci, 2011, 89(5-6): 141-146.[36] Hakan Aldskogius, Elena N Kozlova. Central neuron-gial and glial-glial interactions following axon injury [J]. Prog Neurobiol, 1998, 55(1): 1-26.[37] Tong Xiao-ping, Ao Yan, Guido C Faas, et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice [J]. Nat Neurosci, 2014, 17(5): 694-703.[38] Anna Maria Colangelo, Giovanni Cirillo, Maria Luisa Lavitrano, et al. Targeting reactive astrogliosis by novel biotechnological strategies [J]. Biotechnol Adv, 2012, 30(1): 261-271.[39] Sarika Singh, Supriya Swarnkar, Poonam Goswami, et al. Astrocytes and microglia: responses to neuropathological conditions [J]. Int J Neurosci, 2011, 121(11): 589-597.[40] Marcus Calkins, Marcelo R Vargas, Delinda A Johnson, et al. Astrocyte-speci?c overexpression of Nrf2 protects striatal neurons from mitochondrial complex II inhibition [J]. Toxicol Sci, 2010, 115(2): 557-568.[41] Anna Maria Colangelo, Lilia Alberghina, Michele Papa. Astrogliosis as a therapeutic target for neurodegenerative diseases [J]. Neurosci Lett, 2014, 565:56-64.[42] Wolfgang J Streit, Robert E Mrak, W Sue Griffin. Microglia and neuroinflammation: a pathological perspective [J]. J Neuroinflammation, 2004, 1(1): 14.[43] Ridet J L, A Privat S K, Malhotra F H Gage, et al. Reactive astrocytes: cellular and molecular cues to biological function [J]. Trends Neurosci, 1997, 20(12): 570-577.[44] Shilpee Singh, Magdalena Misiak, Cordian Beyer, et al. Cytochrome c oxidase isoform IV-2 is involved in 3-nitropropionic acid-induced toxicity in striatal astrocytes [J]. Glia, 2009, 57(14): 1480-1491.[45] Nicholas J Maragakis, Jeffrey D Rothstein, Mechanisms of disease: astrocytes in neurodegenerative disease [J]. Nat Clin Pract Neurol, 2006, 2(12): 679-689.[46] Markus Kipp, Serkan Karakaya, Justuna Pawlak, et al. Estrogen and the development and protection of nigrostriatal dopaminergic neurons: concerted action of a multitude of signals, protective molecules, and growth factors [J]. Front Neuroendocrinol, 2006, 27(4): 376-390.[47] Dugan L L, Bruno V M G, Amagasu S M, et al. Glia modulate the response of murine cortical neurons to excitotoxicity: glia exacerbate AMPA neurotoxicity [J]. J Neuroscience, 1995, 15(6): 4545-4555.[48] George Barreto, Janneth Gonzalez, Francisico Capani, et al. Neuroprotective agents in brain injury: a partial failure? [J]. Int J Neurosci, 2012, 122(5): 223-226.[49] Anna Sofia Falcao, Rui F M Sliva, Ana Rita Vaz, et al. Cross-talk between neurons and astrocytes in response to bilirubin: early beneficial effects [J]. Neurochem Res, 2013, 38(3): 644-659.[50] Fernandez-Fernandez S, Almeida A, Bolanos J P. Antioxidant and bioenergetic coupling between neurons and astrocytes [J]. Biochem J, 2012, 443(1): 3-11.[51] Juan P Bolaños, Angeles Almeida, Victoria Stewart, et al. Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases [J]. J Neurochemistry, 1997, 68(6): 2227-2240.[52] Igor Allaman, Mireille Belanger, Pierre J Magistretti. Astrocyte-neuron metabolic relationships: for better and for worse [J]. Trends Neurosci, 2011, 34(2): 76-87.[53] Andy Y Shih, Heidi Erb, Sun Xiao-jian, et al. Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation [J]. J Neurosci, 2006, 26(41): 10514-10523.[54] Marcelo R Vargas, Jeffrey A Johnson. The Nrf2–ARE cytoprotective pathway in astrocytes [J]. Expert Rev Mol Med, 2009, 11: e17.[55] Pei-Chun Chen, Marcelo R Vargas, Amar K Pani, et al. Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson's disease: Critical role for the astrocyte [J]. Proc Natl Acad Sci USA, 2009, 106(8): 2933-2938.[56] Marzai Perluigi, H Fai Poon, William Maragos, et al. Proteomic analysis of protein expression and oxidative modification in R6/2 transgenic mice [J]. Molecular Cellular Proteomics, 2005, 4(12): 1849-1861.[57] Fu Ru-ying, Shen Qing-yu, Xu Peng-fei, et al. Phagocytosis of microglia in the central nervous system diseases [J].Mol Neurobiol, 2014, 49(3):1422-1434.[58] Denis Soulet, Serge Rivest. Microglia [J]. Curr Biol, 2008, 18(12): R506-R508.[59] Guido Stollg, Sebastian Jander. The role of microglia and macrophages in the pathophysiology of the CNS [J]. Prog Neurobiol, 1999, 58(3): 233-247.[60] Jochen Gehrmann, Yoh Matsumoto, Georg W Kreutzberg. Microgla: intrinsic immuneffector cell of the brain [J]. Brain Res Rev, 1995, 20(3): 269-287.[61] Seung U Kim, Jean de Vellis. Microglia in health and disease [J]. J Neurosci Res, 2005, 81(3): 302-313.[62] Guo-Fang Tseng, Yueh-Jan Wang, Quin-Chen Lai. Perineuronal microglial reactivity following proximal and distal axotomy of rat rubrospinal neurons [J]. Brain Research, 1996, 715(1-2): 32-43.[63] Georg W Kreutzberg. Microglia: a sensor for pathological events in the CNS [J]. GLIA, 1996, 19(8): 312-318.[64] Elisabetta Polazzi, Tatiana Gianni, Antonio Contestabile. Microglial cells protect cerebellar granule neurons from apoptosis: evidence for reciprocal signaling [J]. Glia, 2001, 36(3): 271-280.[65] Stella Elkabes, Emanuel M DiCicco-Bloom, Ira B Black. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function [J]. J Neuroscience, 1996, 16(8): 2508-2521.[66] Phoebe Harjes, Erich E Wanker. The hunt for huntingtin function: interaction partners tell many different stories [J]. Trends Biochem Sci, 2003, 28(8): 425-433.[67] Mel B Feany, Albert R La Spada. Polyglutamines stop traffic: axonal transport as a common target in neurodegenerative diseases [J]. Neuron, 2003, 40(1-9): 1-2.[68] Yu Zhao-xue, Li Shi-hua, Joy Evans, et al. Mutant huntingtin causes context-dependent neurodegeneration in mice with Huntington's disease [J]. J Neurosci, 2003, 23(6): 2193-2202.[69] P Hemachandra Reddy, Maya Williams, Vinod Charles, et al. Behavioural abnormalities and selective neuronal loss in HD transgenic mice expressing mutated full-length HD cDNA [J]. Nature Genetics, 1998, 20(2): 198-202.[70] Juan Perucho, Maria Jose Casarejos, Ana Gomez, et al. Striatal infusion of glial conditioned medium diminishes huntingtin pathology in r6/1 mice [J]. PLoS One, 2013, 8(9): e73120.[71] Jennifer Bradford, Ji-Yeon Shin, Meredith Roberts, et al. Mutant huntingtin in glial cells exacerbates neurological symptoms of huntington disease mice [J]. J Biological Chemistry, 2010, 285(14): 10653-10661.[72] Ji-Yeon Shin, Fang Zhi-hui, Yu Zhao-xue et al. Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity [J]. JCB, 2005, 171(6): 1001-1012.[73] Suzanne Tydlacka, Chuan-En Wang, Wang Xue-jun, et al. Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons [J]. J Neurosci, 2008, 28(49): 13285-13295.[74] James A Dowell, Jeffrey A Johnson. Mechanisms of Nrf2 protection in astrocytes as identified by quantitative proteomics and siRNA screening [J]. PLoS ONE, 2013, 8(7): e70163.[75] Emmanuel Brouillet, Carine Jacquard, Nicolas Bizat, et al. 3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington's disease [J]. J Neurochem, 2005, 95(6): 1521-1540.[76] J C Lievens, B Woodman, A Mahal, et al. Impaired glutamate uptake in the R6 Huntington's disease transgenic mice [J]. Neurobiol Dis, 2001, 8(5): 807-821.[77] Thomas W Kensler, Nobunao Wakabayashi, Shyam Biswal. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway [J]. Annu Rev Pharmacol Toxicol, 2007, 47: 89-116.[78] Ma Qiang, Lori Battelli, Ann F Hubbs. Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2 [J]. Am J Pathol, 2006, 168(6): 1960-1974.[79] Jeong-Sang Lee, Young-Joon Surh. Nrf2 as a novel molecular target for chemoprevention [J]. Cancer Lett, 2005, 224(2): 171-184.[80] Jong-Min Lee, Li Jiang, Delinda A Johnson, et al. Nrf2, a multi-organ protector? [J]. FASEB J, 2005, 19(9): 1061-1066.[81] Jong-Min Lee, Jeffrey A Johnson. An important role of Nrf2-ARE pathway in the cellular defense mechanism [J]. J Biochem Mol Biol, 2004, 37(2): 139-143.[82] Zhang Li-yuan, Zhu Zhen-hong, Liu Jian-hua, et al. Protective effect of N-acetylcysteine (NAC) on renal ischemia/reperfusion injury through Nrf2 signaling pathway [J]. J Recept Signal Transduct Res, 2014, 34(5):369-400.[83] Blanco-Ayala T, Anderica-Romero A C, Pedraza-Chaverri J. New insights into antioxidant strategies against paraquat toxicity [J]. Free Radic Res, 2014, 48(6): 623-640.[84] Ben A Barres. The mystery and magic of glia: a perspective on their roles in health and disease [J]. Neuron, 2008, 60(3): 430-440. |
[1] | 郝军荣, 牛红双, 刘宜周, 董晓华. 氧化应激在糖尿病肾病中的作用及抗氧化治疗研究进展[J]. 神经药理学报, 2020, 10(2): 33-38. |
[2] | 林思梅, 周虹, 杨宝学. 高尿酸血症与慢性肾脏病相关性研究进展[J]. 神经药理学报, 2020, 10(2): 55-64. |
[3] | 苗明三,彭孟凡,方晓艳,贾佼佼,白明. 大血藤总酚酸对局灶性脑缺血再灌注大鼠脑组织氧化应激水平和能量代谢的影响[J]. 神经药理学报, 2019, 9(1): 1-5. |
[4] | 魏珍珍,方晓艳,白明,苗明三. 基于星形胶质细胞的脑缺血损伤治疗研究进展[J]. 神经药理学报, 2019, 9(1): 36-43. |
[5] | SHEN li-xia1,LIU Liang-liang1,ZHANG Ming1,LIU Yang1,ZHANG Dan-shen 2*. Research of Quercetin’s Estrogen-Like Action on Central Nervous System and Its Mechanisms[J]. 神经药理学报, 2018, 8(4): 23-25. |
[6] | 白如冰,张忠泉,岑娟. P- 糖蛋白在神经元中的表达及氧化应激对P- 糖蛋白的影响[J]. 神经药理学报, 2018, 8(3): 9-. |
[7] | 刑媛,张楠,张炜,任雷鸣. 局麻药的中枢神经系统毒性与防治[J]. 神经药理学报, 2018, 8(3): 15-. |
[8] | 王晋辉,黄丽,陈娜. 大脑皮层GABA 能神经元缺血性损伤:易损性,机制和病理影响[J]. 神经药理学报, 2018, 8(2): 8-25. |
[9] | 朱东海,林娟,郭海彪,李楚源. 脑心清片对脂多糖诱导的BV-2 细胞的抗炎及抗凋亡作用[J]. 神经药理学报, 2018, 8(2): 37-37. |
[10] | 禹文峰,李成朋,韩飞,官志忠. 硫辛酸抑制AIF 介导的非Caspase 凋亡通路对多巴胺能神经元的保护机制[J]. 神经药理学报, 2018, 8(2): 40-40. |
[11] | 张林,蒋宁,周文霞,张永祥. 疾病特异性诱导性多功能干细胞AD 模型建立[J]. 神经药理学报, 2018, 8(2): 54-54. |
[12] | 顾丽红,李林. Cuprizone 对少突胶质细胞相关蛋白的影响[J]. 神经药理学报, 2018, 8(2): 58-58. |
[13] | 李江曼,王一頔,王风萍,李炜. 脑缺血再灌注损伤及其星形胶质细胞相关机制研究进展[J]. 神经药理学报, 2017, 7(6): 50-59. |
[14] | 杨杰,刘富甲,田子夏,王乐乐,谢欣梅,庞晓斌. 脉络宁对MCAO 大鼠的神经保护作用及其抗氧化机制研究[J]. 神经药理学报, 2017, 7(4): 1-7. |
[15] | 田由,王雪,艾静. 基底前脑胆碱能神经元功能异常在阿尔茨海默病中的作用相关研究进展[J]. 神经药理学报, 2017, 7(4): 53-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||