[1]何斌斌. 糖尿病、糖尿病前期与心血管疾病指南[J]. 糖尿病临床, 2013,7(11):486-505.[2]Cukierman-Yaffee T. The relationship between dysglycemia and cognitive dysfunction [J]. Curr Opin Investig Drugs, 2009, 10(1):70-74.[3]Umegaki H, Hayashi T, Nomura H, et al. Cognitive dysfunction: an emerging concept of a new diabetic complication in the elderly [J]. Geriatr Gerontol Int, 2013, 13(1):28-34.[4] Geert J Biessels. Sweet memories: 20 years of progress in research on cognitive functioning in diabetes [J]. Eur J Pharmacol, 2013, 719(1-3):153-160.[5] Daniel J Cox, Boris P Kovatchev, Linda A Gonder-Frederick, et al. Relationships between hyperglycemia and cognitive performance among adults with type 1 and type 2 diabetes [J]. Diabetes Care, 2005, 28(1):71-77.[6] Cristina Carvalho, Paige S Katz, Somhrita Dutta, et al. Increased susceptibility to amyloid-β toxicity in rat brain microvascular endothelial cells under hyperglycemic conditions [J]. J Alzheimers Dis, 2014, 38(1):75-83.[7]陈刚, 刘淑娟, 傅飞还. 2型糖尿病与认知功能障碍[J].内科理论与实践, 2012, 7(3):160-164.[8] Sandra J Hamilton, Gerald F Watts. Endothelial dysfunction in diabetes: pathogenesis, significance, and treatment [J]. Rev Diabet Stud, 2013, 10(2-3):133-156.[9]Singh V P, Bali A, Singh N, et al. Advanced glycation end products and diabetic complications [J]. Korean J Physiol Pharmacol, 2014, 18(1):1-14.[10]Chen C, Li X H, Tu Y, et al. Aβ-AGE aggravates cognitive deficit in rats via RAG-E pathway [J]. Neuroscience, 2014, 257(17):1-10.[11]Chen S, An F M, Yin L, et al. Glucagon-like peptide-1 protects hippocampal neurons against advanced glycation end product-induced tau hyperphosphorylation [J]. Neuroscience, 2014, 256:137-146.[12] George S Bloom. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis [J]. JAMA Neurol, 2014, 71(4):505-508.[13]Su Shan-yu, Cheng Chin-yi, Tsai Tung-hu, et al. Paeonol attenuates H2O2-induced NF-κB-associat-ed amyloid precursor protein expression [J]. Am J Chin Med, 2010, 38(6):1171-1192.[14] Linda Chami, Virginie Buggia-Prévot, Eric Duplan, et al. Nuclear factor-κB regulates βAPP and β- and γ-secretases differently at physiological and supraphysiological Aβ concentrations[J]. J Biol Chem, 2012, 287(29):24573-24584.[15]Xie Jian-ling, Jose D Méndez, Verna Méndez-Valenzuela, et al. Cellular signalling of the receptor for advanced glycation end products (RAGE) [J]. Cell Signal, 2013, 25(11):2185-2197.[16]Ghribi O, Larsen B, Schrag M, et al. High cholesterol content in neurons increases BACE, β-amyloid, and phosphorylated tau levels in rabbit hippocampus [J]. Exp Neurol, 2006, 200(2):460-467.[17] Andrew J Beel, Masayoshi Sakakura, Paul J Barrett, et al. Direct binding of cholesterol to the amyloid precursor protein: An important interaction in lipid-Alzheimer's disease relationships [J]. Biochim Biophys Acta, 2010, 1801(8):975-982.[18] Makoto Michikawa. Cholesterol paradox: is high total or low HDL cholesterol level a risk for Alzheimer's disease [J]. J Neurosci Res, 2003, 72(2):141-146.[19] Andrew B Wolf, Richard J Caselli, Eric M Reiman, et al. APOE and neuroenergetics: an emerging p-aradigm in Alzheimer's disease [J]. Neurobiol Aging, 2013, 34(4):1007-1017.[20]Vance J E, Karten B, Hayashi H. Lipid dynamics in neurons [J]. Biochem Soc Trans, 2006, 34(Pt 3):399-403.[21]刘文, 张宁. 载脂蛋白E与糖尿病[J].东南大学学报:医学版, 2014, 33(2):231-234.[22] Michael Malek-Ahmadi, Thomas Beach, Aleksandra Obradov, et al. Increased Alzheimer's disease neuropathology is associated with type 2 diabetes and ApoE ε. 4 carrier status [J]. Curr Alzheimer Res, 2013, 10(6):654-659.[23] Jochen Walter. γ-Secretase, apolipoprotein E and cellular cholesterol metabolism [J]. Curr Alzheimer Res, 2012, 9(2):189-199.[24] David M Holtzman, Joachim Herz, Bu Guo-jun. Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease [J]. Cold Spring Harb Perspect Med, 2012, 2(3):a006312.[25] Andrew B Wolf, Jon Valla, Bu Guo-jun, et al. Apolipoprotein E as a β-amyloid-independent factor in Alzheimer's disease [J]. Alzheimers Res Ther, 2013, 5(5):38.[26] Adam R Cole, Arlene Astell, Charlotte Green, et al. Molecular connexions between dementia and diabetes [J]. Neurosci Biobehav Rev, 2007, 31(7):1046-1063.[27] Bordier L, Doucet J, Boudet J, et al. Update on cognitive decline and dementia in elderly patients with diabetes [J]. Diabetes Metab, 2014, pii: S1262-3636.[28]Fernanda G De Felice. Alzheimer’s disease and insulin resistance: translating basic science into clinical applications [J]. J Clin Invest, 2013, 123(2):531–539.[29]Xian Yan-fang, Mao Qing-qiu, Justin CY Wu, et al. Isorhynchophylline treatment improves the amyloid-β-induced cognitive impairment in rats via inhibition of neuronal apoptosis and tau p-rotein hyperphosphorylation [J]. J Alzheimers Dis, 2014, 39(2):331-346.[30] Suzanne M de la Monte. Contributions of brain insulin resistance and deficiency in a-myloid-related neurodegeneration in Alzheimer's disease [J]. Drugs, 2012, 72(1):49-66.[31] Chen Zhi-chun, Zhong Chun-jiu. Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: Implications for diagnostic and therapeutic strategies [J]. Prog Neurobiol, 2013, 108:21–43.[32] Li Bing, Yu Da-wei, Xu Zhi-ying, et al. Activated protein C inhibits amyloid-β production via promoting expression of ADAM-10 [J]. Brain Res, 2014, 30:1545:35-44.[33]Yang Y, Song W, et al. Molecular links between Alzheimer's disease and diabetes mellitus [J]. Neuroscience, 2013, 250:140-150.[34] Shingo Ito, Sumio Ohtsuki, Sho Murata, et al. Involvement of insulin-degrading enzyme in insulin and atrial natriuretic peptide-sensitive internalization of amyloid-β peptide in mouse brain capillary endothelial cells [J]. J Alzheimers Dis, 2014, 38(1):185-200.[35] Pamela Salcedo-Tello, Karina Hernández-Ortega, Clorinda Arias, et al. Susceptibility to GSK3β-induc-ed tau phosphorylation differs between the young and aged hippocampus after Wnt sig-naling inhibition [J]. J Alzheimers Dis, 2014, 39(4):775-785.[36] Shashi Kant Tiwari, Swati Agarwal, Brashket Seth, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via can-onical Wnt/β-catenin pathway [J]. ACS Nano, 2014, 8(1):76-103.[37] Aniko Varadi, Takashi Tsuboi, Linda I Johnson-Cadwell, et al. Kinesin I and cytoplasmic dynein orchestrate glucose-stimulated insulin-containing vesicle movements in clonal MIN6 beta-cells [J].Biochem Biophys Res Commun, 2003, 311(2):272-282.[38] Michelle Carey, Sylvia Kehlenbrink, Meredith Hawkins, et al. Evidence for central regulation of glucose metabolism [J]. J Biol Chem, 2013, 288(49):34981-34988.[39] Jamaica R Rettberg, Yao Jia, Roberta D Brinton. Estrogen: a master regulator of bioenergetic systems in the brain and body [J]. Front Neuroendocrinol, 2014, 35(1):8-30.[40] Hannah Bruehl, Melanie Rueger, Isabel Dziobek, et al. Hypothalamic-pituitary-adrenal axis dysregulation and memory impairments in type 2 diabetes [J]. J Clin Endocrinol Metab, 2007, 92(7):2439-2445.[41] Manuel Gil-Lozano, Marina Romaní-Pérez, Veronica Outeiriño-Iglesias, et al. Effects of prolonged e-xendin-4 administration on hypothalamic-pituitary-adrenal axis activity and water balance [J]. Am J Physiol Endocrinol Metab, 2013, 304(10):E1105-E1117.[42]Amin S N, Younan S M, Youssef M F, et al. A histological and functional study on hippocampal formation of normal and diabetic rats [J]. F1000Res, 2013, 2:151.[43]Soares E, Prediger R D, Nunes S, et al. Spatial memory impairments in a prediabetic rat model [J]. Neuroscience, 2013, 250:565-577.[44] Claire Allen, Kirtiman Srivastava, Ulvi Bayraktutan. Small GTPase RhoA and its effector rho kinase mediate oxygen glucose deprivation-evoked in vitro cerebral barrier dysfunction [J]. Stroke, 2010, 41(9):2056-2063.[45] Joe M Chehade, Michael J Haas, Arshag D Mooradian. Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression [J]. Neurochem Res, 2002, 27(3):249-252.[46]VanGilder R L, Kelly K A, Chua M D, et al. Administration of sesamol improved blood-brain barrier function in streptozotocin-induced diabetic rats [J]. Exp Brain Res, 2009, 197(1):23-34.[47]Kook Sun-young, Hyun Seok Hong, Moon M, et al. Disruption of blood-brain barrier in Alzheimer disease pathogenesis [J]. Tissue Barriers, 2014, 1(2):e23993.[48]Ning Rui-zhuo, Michael Chopp, Alex Zacharek, et al. Neamine induces neuroprotection after acute ischemic stroke in type one diabetic rats [J]. Neuroscience, 2014, 257:76-85.[49]Hong Hao, Liu Li-ping, Liao Jian-ming, et al. Downregulation of LRP1 at the blood-brain barrier in streptozotocin-induced diabetic mice [J]. Neuropharmacology, 2013, 56(6-7):1054-1059.[50]Kook S Y, Hong H S, Moon M, et al. Aβ1-42-RAGE interaction disrupts tight junctions of the blood-brain barrier via Ca²+-calcineurin signaling [J]. J Neurosci, 2012, 32(26):8845-8854.[51] Shingo Ito, Sumio Ohtsuki, Tetsuya Terasaki. Functional characterization of the brain-to-blood effluxclearance of human amyloid-beta peptide (1-40) across the rat blood-brain barrier [J]. Neurosci Res, 2006, 56(3):246-252.[52] Ewan C McNay, AK Recknagel. Brain insulin signaling: a key component of cogni-tive processes and a potential basis for cognitive impairment in type 2 diabetes [J]. Neurobiol Learn Mem, 2011, 96(3):432-442.[53]Chen Yao-min, Zhou Kun, Wang Rui-shan, et al. Antidiabetic drug metformin (Glucophager) increases biogenesis of Alzheimer's amyloid peptides via up-regulating bace1 transcription [J]. Proc Natl Acad Sci USA, 2009, 106(10):3907-3912.[54]Wang Li, Yu Chun-Jiang, Liu Wei, et al. Rosiglitazone protects neuroblastoma cells against advanced glycation end products-induced injury [J]. Acta Pharmacol Sin, 2011, 32(8):991-998.[55]Li Ya-zhou, Kara B Duffy, Mary Ann Ottinger, et al. GLP-1 receptor stimulation reduces amyloid-pep-tide accumulation and cytotoxicity in cellular and animal models of Alzheimer's disease [J]. J Alzheimers Dis, 2010, 19(4):1205-1219.[56] Noppamas Pipatpiboon, Hiranya Pintana, Wasana Pratchayasakul, et al. DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption [J]. Eur J Neurosci, 2013, 37(5):839-849.[57] Zina Kroner. The relationship between Alzheimer's disease and diabetes: Type 3 diabetes [J]. Altern Med Rev, 2009, 14(4):373-379.[58]Zhang Yi, Zhou Ben, Zhang Fang, et al. Amyloid-β induces hepatic insulin resistance by activating JAK2/STAT3/SOCS-1 signaling pathway [J]. Diabetes, 2012, 61(6):1434-1443.[59]Zhang Yi, Zhou Ben, Deng Bo, et al. Amyloid-β induces hepatic insulin resistance in vivo via JAK2[J]. Diabetes, 2013, 62(4):1159-1166. |