[1] Guo Cai-xia, J Nicole Kosarek-Stancel, Tie-Shan Tang, et al. Y-family DNA polymerases in mammalian cells[J]. Cell Mol Life Sci, 2009, 66(14):2363-2381.[2] Errol C Friedberg, Robert Wagner, Miroslav Radman. Specialized DNA polymerases, cellular survival, and the genesis of mutations [J]. Science, 2002, 296(5573):1627-1630.[3] Philip A Knobel, Thomas M Marti. Translesion DNA synthesis in the context of cancer research [J]. Cancer Cell Int, 2011, 11: 39.[4] Robert Evan Johnson, M T Washington, Shamsher Prakash, et al. Fidelity of human DNA polymerase eta [J]. J Biol Chem, 2000, 275(11): 7447-7450.[5] Robert E Johnson, Satya Prakash, Louise Prakash. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Poleta [J]. Science, 1999, 283(5404): 1001-1004.[6] Cruet-Hennequart S, Gallagher K, Sokol A M, et al. DNA polymerase eta, a key protein in translesion synthesis in human cells [J]. Subcell Biochem, 2010, 50: 189-209.[7] Shilpy Sharma, J Kevin Hicks, Colleen L Chute, et al. REV1 and polymerase zeta facilitate homologous recombination repair [J]. Nucleic Acids Res, 2012, 40(2): 682-691.[8] Tomoo Ogi, Siripan Limsirichaikul, Rene M Overmeer, et al. Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells [J]. Mol Cell, 2010, 37(5): 714-727.[9] Zhang Xiu-li, Lv Ling-na, Chen Qian, et al. Mouse DNA polymerase kappa has a functional role in the repair of DNA strand breaks [J]. DNA Repair (Amst), 2013, 12(5): 377-388.[10] Lajos Haracska, Iidiko Unk, Robert Evan Johnson, et al. Stimulation of DNA synthesis activity of human DNA polymerase kappa by PCNA [J]. Mol Cell Biol, 2002, 22(3): 784-791.[11] Errol C Friedberg. Reversible monoubiquitination of PCNA: A novel slant on regulating translesion DNA synthesis [J]. Mol Cell, 2006, 22(2): 150-152.[12] Alan R Lehmann. Ubiquitin-family modifications in the replication of DNA damage [J]. FEBS Lett, 2011, 585(18): 2772-2779.[13] Gargi Ghosal, Chen Jun-jie. DNA damage tolerance: a double-edged sword guarding the genome [J]. Transl Cancer Res, 2013, 2(3): 107-129.[14] Koji Yoshimoto, Masahiro Mizoguchi, Nobuhiro Hata, et al. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma [J]. Front Oncol, 2012, 2: 186.[15] Tian Hui, Gao Zhen, Li Hui-zhong, et al. DNA damage response - A double-edged sword in cancer prevention and cancer therapy [J]. Cancer Lett, 2015, 358(1): 8-16.[16] J Dirk Iglehart, Daniel P Silver. Synthetic lethality--a new direction in cancer-drug development [J]. N Engl J Med, 2009, 361(2): 189-191.[17] Wang Zhi-feng, Wang Feng-li, Tang Tie-shan, et al. The role of PARP1 in the DNA damage response and its application in tumor therapy [J]. Front Med, 2012, 6(2): 156-164.[18] Michael Metzger, Barry L Stoddard, Raymond J Monnat Jr. PARP-mediated repair, homologous recombination, and back-up non-homologous end joining-like repair of single-strand nicks [J]. DNA Repair (Amst), 2013, 12(7): 529-534.[19] Masanao Miwa, Mitsuko Masutani. PolyADP-ribosylation and cancer [J]. Cancer Sci, 2007, 98(10): 1528-1535.[20] Sung Ying-ju, Richard T Ambron. PolyADP-ribose polymerase-1 (PARP-1) and the evolution of learning and memory [J]. Bioessays, 2004, 26(12): 1268-1271.[21] Li Mao, Zhang Zhuo, Donald L Hill, et al. Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway [J]. Cancer Res, 2007, 67(5): 1988-1996.[22] Christopher Calabrese, Robert Almassy, Stephanie Barton, et al. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361 [J]. J Natl Cancer Inst, 2004, 96(1): 56-67.[23] llirjana Bajrami, Jessica R Frankum, Asha Konde, et al. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity [J]. Cancer Res, 2014, 74(1): 287-297.[24] Saqib U, Baig M S. Probing PARP1-inhibitor complexes for the development of novel inhibitors [J]. Cell Mol Biol (Noisy-le-grand), 2014, 60(3): 43-52.[25] Xiong, T., H. Wei, X. Chen, et al. Effect of PARP1 inhibitor PJ34 on multi-drug resistance in human multiple myeloma cell line and its relationship with FA/BRCA pathway[J].J Medical Genetics, 2014, 31(3): 312-316.[26] Na Zhen-kun, Peng Bo, Shukie Ng, et al. A small-molecule protein-protein interaction inhibitor of PARP1 that targets its BRCT domain [J]. Angew Chem Int Ed Engl, 2015, 54(8): 1-6.[27] Philip A Knobel, IIyaN Kotov, Emanuela Felley-Bosco, et al. Inhibition of REV3 expression induces persistent DNA damage and growth arrest in cancer cells [J]. Neoplasia, 2011, 13(10):961-970.[28] Hans Joenje, Marieke Levitus, Quinten Waisfisz, et al. Complementation analysis in Fanconi anemia: assignment of the reference FA-H patient to group A [J]. Am J Hum Genet, 2000, 67(3): 759-762.[29] Yamanaka Kinrin, Dorjsuren Dorjsuren, Robert L Eoff, et al. A comprehensive strategy to discover inhibitors of the translesion synthesis DNA polymerase kappa [J]. PLoS One, 2012, 7(10): e45032.[30] John Wittschieben, Shalini C Reshmi, Susanne M Gollin, et al. Loss of DNA polymerase zeta causes chromosomal instability in mammalian cells [J]. Cancer Res, 2006, 66(1): 134-142.[31] Linda Zander, Mats Bemark. Immortalized mouse cell lines that lack a functional Rev3 gene are hypersensitive to UV irradiation and cisplatin treatment [J]. DNA Repair (Amst), 2004, 3(7): 743-752.[32] Jaime Gallego Perez-Larraya, Jean-Yves Delattre. Management of elderly patients with gliomas [J]. Oncologist, 2014, 19(12): 1258-1267.[33] Brain M Alexander, Nancy Pinnell, Patrick Y Wen, et al. Targeting DNA repair and the cell cycle in glioblastoma [J]. J Neurooncol, 2012, 107(3): 463-477.[34] Maricruz Rivera, Kumar Sukhdeo, Jennifer Yu. Ionizing radiation in glioblastoma initiating cells [J]. Front Oncol, 2013, 3: 74.[35] Massimo Squatrito, Eric C Holland. DNA damage response and growth factor signaling pathways in gliomagenesis and therapeutic resistance [J]. Cancer Res, 2011, 71(18): 5945-5949.[36] Wang Hui-bo, Zhang Shu-yu, Wang Shuai, et al. REV3L confers chemoresistance to cisplatin in human gliomas: the potential of its RNAi for synergistic therapy [J]. Neuro Oncol, 2009, 11(6): 790-802.[37] Lin Xin-jian, Julie Trang, Tsuyoshi Okuda, et al. DNA polymerase accounts for the reduced cytotoxicity and enhanced mutagenicity of cisplatin in human colon carcinoma cells that have lost DNA mismatch repair [J]. Clinical Cancer Research, 2006, 12(2): 563-568.[38] Mark R Albertella, Alan Lau, Mark J O'Connor. The overexpression of specialized DNA polymerases in cancer [J]. DNA Repair (Amst), 2005, 4(5): 583-593.[39] Chen Xie, Wang Hong-wei, Cheng Hong-bin, et al. RAD18 mediates resistance to ionizing radiation in human glioma cells [J]. Biochem Biophys Res Commun, 2014, 445(1): 263-268.[40] Magda Bienko, Catherine M Green, Nicola Crosetto, et al. Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis [J]. Science, 2005, 310(5755): 1821-1824.[41] Jun Huang, Michael S Y Huen, Hongtae Kim, et al. RAD18 transmits DNA damage signalling to elicit homologous recombination repair [J]. Nat Cell Biol, 2009, 11(5): 592-603.[42] Han Jin-hua, Liu Ting, Michael S Huen, et al. SIVA1 directs the E3 ubiquitin ligase RAD18 for PCNA monoubiquitination [J]. J Cell Biol, 2014, 205(6): 811-827.[43] Takahiro Oike, Yoshiyuki Suzuki, Ken-ichi Sugawara, et al. Radiotherapy plus concomitant adjuvant temozolomide for glioblastoma: Japanese mono-institutional results [J]. PLoS One, 2013, 8(11): e78943.[44] Priya U Kumthekar, Bryan D Macrie, Simran K Singh, et al. A review of management strategies of malignant gliomas in the elderly population [J]. Am J Cancer Res, 2014, 4(5): 436-444. |