[1] Chiu Wen-ta, Lin Hsiao-chiao, Lam Carlos, et al. Review paper: epidemiology of traumatic spinal cord injury: comparisons between developed and developing countries[J]. Asia Pac J Public Health, 2010, 22(1): 9-18.[2] Florence M Bareyre, Martin E Schwab. Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays[J]. Trends Neurosci, 2003, 26(10): 555-563.[3] Hartmut B F Pohl, Cristina Porcheri, Thomas Mueggler, et al. Genetically induced adult oligodendrocyte cell death is associated with poor myelin clearance, reduced remyelination, and axonal damage[J]. J Neurosci, 2011, 31(3): 1069-1080.[4] Renaud Quertainmont, Dorothee Cantinieaux, Olivier Botman, et al. Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions[J]. PLoS One, 2012, 7(6): e39500. [5] Marina Boido, Diego Garbossa, Marco Fontanella, et al. Mesenchymal stem cell transplantation reduces glial cyst and improves functional outcome following spinal cord compression[J]. World Neurosurg, 2014, 81(1): 183-90. [6] Ding Ying, Yan Qing, Ruan Jing-wen, et al. Electroacupuncture promotes the differentiation of transplanted bone marrow mesenchymal stem cells overexpressing trkC into neuron-like cells in transected spinal cord of rats[J]. Cell Transplant, 2013, 22(1): 65-86.[7] Serhiy Forostyak, Pavla Jendelova, Eva Sykova. The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications[J]. Biochimie, 2013, 95(12): 2257-2270. [8] Rebecca S Y Wong. Mesenchymal stem cells: angels or demons?[J]. J Biomed Biotechnol, 2011, 2011: 459510. [9] Wu Bo, Sun Lei, Li Pei-jia, et al. Transplantation of oligodendrocyte precursor cells improves myelination and promotes functional recovery after spinal cord injury[J]. Injury, 2012, 43(6): 794-801. [10] Lü He-zuo, Wang Yan-xia, Zou Jian, et al. Differentiation of neural precursor cell-derived oligodendrocyte progenitor cells following transplantation into normal and injured spinal cords[J]. Differentiation, 2010, 80(4-5): 228-240. [11] Fadi J Najm, Angela M Lager, Anita Zaremba, et al. Transcription factor-mediated reprogramming of fibroblasts to expandable, myelinogenic oligodendrocyte progenitor cells[J]. Nat Biotechnol, 2013, 31(5): 426-433. [12] Zhu Qiang, Scott R Whittemore, William H Devries, et al. Dorsally-derived oligodendrocytes in the spinal cord contribute to axonal myelination during development and remyelination following focal demyelination[J]. Glia, 2011, 59(11): 1612-1621. [13] Kakinohana O, Juhasova J, Juhas S, et al. Survival and differentiation of human embryonic stem cell-derived neural precursors grafted spinally in spinal ischemia-injured rats or in naïve immunosuppressed minipigs: a qualitative and quantitative study[J]. Cell Transplant, 2012, 21(12): 2603-2619.[14] Ali Niapour, Fereshteh Karamali, Shiva Nemati, et al. Cotransplantation of human embryonic stem cell-derived neural progenitors and schwann cells in a rat spinal cord contusion injury model elicits a distinct neurogenesis and functional recovery[J]. Cell Transplantation, 2012, 21(5): 827-843.[15] Angelo H All, Faith A Bazley, Siddharth Gupta, et al. Human embryonic stem cell-derived oligodendrocyte progenitors aid in functional recovery of sensory pathways following contusive spinal cord injury[J]. PLoS One, 2012, 7(10): e47645.[16] Zhou Zhi-lai, Zhang Hui, Anmin Jin, et al. A combination of taxol infusion and human umbilical cord mesenchymal stem cells transplantation for the treatment of rat spinal cord injury[J]. Brain Res, 2012, 1481: 79-89. [17] Cao Qi-lin, He Qian, Wang Ya-ping, et al. Transplantation of ciliary neurotrophic factor-expressing adult oligodendrocyte precursor cells promotes remyelination and functional recovery after spinal cord injury[J]. J Neurosci, 2010, 30(8): 2989-3001.[18] Veiga S, Ly J, Chan P H, et al. SOD1 overexpression improves features of the oligodendrocyte precursor response in vitro[J]. Neurosci Lett, 2011, 503(1): 10-14. [19] Lü He-zuo, Wang Yan-xia, Zhou Jian-sheng, et al. Cyclosporin a increases recovery after spinal cord injury but does not improve myelination by oligodendrocyte progenitor cell transplantation[J]. BMC Neurosci, 2010, 11: 127.[20] Cui Yi-fang, Xu Jin-chong, Hargus Gunnar, et al. Embryonic stem cell-derived L1 overexpressing neural aggregates enhance recovery after spinal cord injury in mice[J]. PLoS One, 2011, 6(3): e17126.[21] Stephanie M Willerth. Neural tissue engineering using embryonic and induced pluripotent stem cells[J]. Stem Cell Res Ther, 2011, 2(2): 17.[22] Alejandra M Vitale, Ernst Wolvetang, Alan Mackay-Sim. Induced pluripotent stem cells: a new technology to study human diseases[J]. Int J Biochem Cell Biol, 2011, 43(6): 843-846. [23] Kazutoshi Takahashi, Koji Tanabe, Mari Ohnuki, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872. [24] Zhang D, Jiang W, Liu M, et al. Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells[J]. Cell Res, 2009, 19(4): 429-438.[25] Song Zhi-hua, Cai Jun, Liu Yan-xia, et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells[J]. Cell Res, 2009, 19(11): 1233-1242. [26] Zhao Xiao-yang, Li Wei, Lv Zhuo, et al. iPS cells produce viable mice through tetraploid complementation[J]. Nature, 2009, 461(7260): 86-90.[27] Jeremy I Pearl, Andrew S Lee, Dennis B Leveson-Gower, et al. Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells[J]. Cell Stem Cell, 2011, 8(3): 309-317.[28] Steve S W Han, Luis A Williams, Kevin C Eggan. Constructing and deconstructing stem cell models of neurological disease[J]. Neuron, 2011, 70(4): 626-644. [29] Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts[J]. Nat Biotechnol, 2008, 26(1): 101-106. [30] Luigi Warren, Philip D Manos, Tim Ahfeldt, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA[J]. Cell Stem Cell, 2010, 7(5): 618-630. [31] Frederick Anokye-Danso, Chinmay M Trivedi, Denise Juhr, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency[J]. Cell Stem Cell, 2011, 8(4): 376-388.[32] Thomas Winkler, Amy Cantilena, Jean-Yves Métais, et al. No evidence for clonal selection due to lentiviral integration sites in human induced pluripotent stem cells[J]. Stem Cells, 2010, 28(4): 687-694.[33] Masaya Nakamura, Hideyuki Okano. Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells[J]. Cell Res, 2013, 23(1): 70-80. [34] Ye Lin, Judy C Chang, Lin Chin, et al. Generation of induced pluripotent stem cells using site-specific integration with phage integrase[J]. Proc Natl Acad Sci USA, 2010, 107(45): 19467-19472. [35] Bryce W Carey, Styliani Markoulaki, Jacob Hanna, et al. Reprogramming of murine and human somatic cells using a single polycistronic vector[J]. Proc Natl Acad Sci U S A, 2009, 106(1): 157-162. [36] Lu Jian-feng, Liu Hui-sheng, Huang Cindy-Tzu-ling, et al. Generation of integration-free and region-specific neural progenitors from primate fibroblasts[J]. Cell Rep, 2013, 3(5): 1580-1591. [37] Kenji Osafune, Leslie Caron, Malgorzata Borowiak, et al. Marked differences in differentiation propensity among human embryonic stem cell lines[J]. Nat Biotechnol, 2008, 26(3): 313-315. [38] Steve S W Han, Luis A Williams, Kevin C Eggan. Constructing and deconstructing stem cell models of neurological disease[J]. Neuron, 2011, 70(4): 626-644. [39] Dae-Sung Kim, Jae Souk Lee, Joong Woo Leem, et al. Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity[J]. Stem Cell Rev, 2010, 6(2): 270-281.[40] Zeng Hui, Guo Min, Martins-Taylor Kristen, et al. Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells[J]. PLoS One, 2010, 5(7): e11853.[41] Ayako Kitazawa, Norio Shimizu. Differentiation of mouse induced pluripotent stem cells into neurons using conditioned medium of dorsal root ganglia[J]. N Biotechnol, 2011, 28(4): 326-333.[42] Jeong-Yeh Yang, Jennifer L Mumaw, Yubing Liu, et al. SSEA4 positive pig induced pluripotent stem cells are primed for differentiation into neural cells[J]. Cell Transplant, 2013, 22(6): 945-959.[43] Mark E Hester, Matthew J Murtha, Sungwon Song, et al. Rapid and efficient generation of functional motor neurons from human pluripotent stem cells using gene delivered transcription factor codes[J]. Mol Ther, 2011, 19(10): 1905-1912. [44] Masaya Nakamura, Osahiko Tsuji, Satoshi Nori, et al. Cell transplantation for spinal cord injury focusing on iPSCs[J]. Expert Opin Biol Ther, 2012, 12(7): 811-821. [45] Hayashi Y, Jacob-Vadakot S, Dugan E A, et al. 5-HT precursor loading, but not 5-HT receptor agonists, increases motor function after spinal cord contusion in adult rats[J]. Exp Neurol, 2010, 221(1): 68-78. [46] Osahiko Tsuji, Kyoko Miura, Yohei Okada, et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury[J]. Proc Natl Acad Sci U S A, 2010, 107(28): 12704-12709. [47] Satoshi Nori, Yohei Okada, Akimasa Yasuda, et al. Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice[J]. Proc Natl Acad Sci USA, 2011, 108(40): 16825-16830. [48] Yusuke Fujimoto, Masahiko Abematsu, Anna Falk, et al. Treatment of a mouse model of spinal cord injury by transplantation of human induced pluripotent stem cell-derived long-term self-renewing neuroepithelial-like stem cells[J]. Stem Cells, 2012, 30(6): 1163-1173.[49] Mario A Saporta, Marica Grskovic, John T Dimos. Induced pluripotent stem cells in the study of neurological diseases[J]. Stem Cell Res Ther, 2011, 2(5): 37.[50] Florence M Bareyre, Martin E Schwab. Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays[J]. Trends Neurosci, 2003, 26(10): 555-563. [51] John H Brock, Ephron S Rosenzweig, Armin Blesch, et al. Local and remote growth factor effects after primate spinal cord injury[J]. J Neurosci, 2010, 30(29): 9728-9737.[52] Mohammad Ronaghi, Slaven Erceg, Victoria Moreno-Manzano, et al. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells?[J]. Stem Cells, 2010, 28(1): 93-99.[53] Qin Jie, Gong Guang-ming, Sun Shi-lei, et al. Functional recovery after transplantation of induced pluripotent stem cells in a rat hemorrhagic stroke model[J]. Neurosci Lett, 2013, 554: 70-75.[54] Koichi Hayashi, Masayuki Hashimoto, Masao Koda, et al. Increase of sensitivity to mechanical stimulus after transplantation of murine induced pluripotent stem cell-derived astrocytes in a rat spinal cord injury model[J]. J Neurosurg Spine, 2011, 15(6): 582-593. [55] Hideyuki Okano. Investigation of regeneration of damaged CNS and neurological diseases mechanisms using iPS cells[J]. Rinsho Shinkeigaku, 2010, 50(11): 887.[56] Payam Saadai, Aijun Wang, Yvette S Nout, et al. Human induced pluripotent stem cell-derived neural crest stem cells integrate into the injured spinal cord in the fetal lamb model of myelomeningocele[J]. J Pediatr Surg, 2013, 48(1): 158-163. [57] Samuel E Nutt, Eun-Ah Chang, Steven T Suhr, et al. Caudalized human iPSC-derived neural progenitor cells produce neurons and glia but fail to restore function in an early chronic spinal cord injury model[J]. Exp Neurol, 2013, 248: 491-503. [58] Prajna Guha, John W Morgan, Gustavo Mostoslavsky, et al. Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells[J]. Cell Stem Cell, 2013, 12(4): 407-412. [59] Fu Xue-mei. The immunogenicity of cells derived from induced pluripotent stem cells[J]. Cell Mol Immunol, 2014, 11(1): 14-16. [60] Shinya Yamanaka. Induced pluripotent stem cells: past, present, and future[J]. Cell Stem Cell, 2012, 10(6): 678-684. [61] Takuya Yagi, Daisuke Ito, Yohei Okada, et al. Modeling familial Alzheimer's disease with induced pluripotent stem cells[J]. Hum Mol Genet, 2011, 20(23): 4530-4539.[62] Ivan Gutierrez-Aranda, Veronica Ramos-Mejia, Clara Bueno, et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection[J]. Stem Cells, 2010, 28(9): 1568-1570.[63] Kyoko Miura, Yohei Okada, Takashi Aoi, et al. Variation in the safety of induced pluripotent stem cell lines[J]. Nat Biotechnol, 2009, 27(8): 743-745. [64] Keisuke Kaji, Katherine Norrby, Agnieszka Paca, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors[J]. Nature, 2009, 458(7239): 771-775. [65] John T Dimos, Kit T Rodolfa, Kathy K Niakan, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons[J]. Science, 2008, 321(5893): 1218-1221. [66] Ronald K F Fung, Ian H Kerridge. Uncertain translation, uncertain benefit and uncertain risk: ethical challenges facing first-in-human trials of induced pluripotent stem (ips) cells[J]. Bioethics, 2013, 27(2): 89-96. [67] Ryan P Salewski, Josef Buttigieg, Robert A Mitchell, et al. The generation of definitive neural stem cells from PiggyBac transposon-induced pluripotent stem cells can be enhanced by induction of the NOTCH signaling pathway[J]. Stem Cells Dev, 2013, 22(3): 383-396. [68] Shinya Yamanaka. Induced pluripotent stem cells: past, present, and future[J]. Cell Stem Cell, 2012, 10(6): 678-84. |