[1] D Hoyer, G Martin. 5-HT receptor classification and nomenclature: towards a harmonization with the human genome[J]. Neuropharmacology, 1997, 36 (4-5): 419-428.[2] K P Lesch, J Disselkamp-Tietze, A Schmidtke. 5-HT1A receptor function in depression: effect of chronic amitriptyline treatment[J]. J Neural Transm Gen Sect, 1990, 80 (2): 157-161.[3] Paul R Albert. Transcriptional regulation of the 5-HT1A receptor: implications for mental illness[J]. Philos Trans R Soc Biol Sci, 2012, 367(1601): 2402-2415. [4] Li Yan, Kasper F Raaby, Connie Sanchez, et al. Serotonergic receptor mechanisms underlying antidepressant-like action in the progesterone withdrawal model of hormonally induced depression in rats[J]. Behav Brain Res, 2013, 256: 520-528.[5] A C Nugent, P J Carlson, E E Bain, et al. Mood stabilizer treatment increases serotonin type 1A receptor binding in bipolar depression[J]. J Psychopharmacol, 2013, 27 (10): 894-902.[6] James W Murrough, Shannan Henry, J Hu, et al. Reduced ventral striatal/ventral pallidal serotonin1B receptor binding potential in major depressive disorder[J]. Psychopharmacology (Berl), 2011, 213 (2-3): 547-53.[7] R C Shelton, E Sanders-Bush, D H Manier, et al. Elevated 5-HT2A receptors in postmortem prefrontal cortex in major depression is associated with reduced activity of protein kinase A[J]. Neuroscience, 2009, 158 (4): 1406-1415.[8] Sharon Rosenzweig-Lipson, Annmarie Sabb, Gary Stack, et al. Antidepressant-like effects of the novel, selective, 5-HT2C receptor agonist WAY-163909 in rodents[J]. Psychopharmacology, 2007, 192 (2): 159-170.[9] Li Bing-jin, Zhao Jing, Lv Jia-yin, et al. Additive antidepressant-like effects of fasting with imipramine via modulation of 5-HT2 receptors in the mice[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2014, 48(3): 199-206.[10] Laurent P Lacroix, Lee A Dawson, Jim J Hagan, et al. 5-HT6 receptor antagonist SB-271046 enhances extracellular levels of monoamines in the rat medial prefrontal cortex[J]. Synapse, 2004, 51 (2): 158-164.[11] Herbert Y Meltzer. Serotonergic mechanisms as targets for existing and novel antipsychotics[M].Handb Exp Pharmacol, 2012, 212: 87-124. [12] Anna Weso?owska, Agnieszka Nikiforuk. Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression[J]. Neuropharmacology, 2007, 52 (5): 1274-1283.[13] Per Svenningsson, Eleni T Tzavara, Qi Hong-shi, et al. Biochemical and behavioral evidence for antidepressant-like effects of 5-HT6 receptor stimulation [J]. J Neurosci, 2007, 27 (15): 4201-4209.[14] Atheir I Abbas, Peter B Hedlund, X P Huang, et al. Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo[J]. Psychopharmacology, 2009, 205 (1): 119-128.[15] Anna Weso?owska, Ewa Tatarczyńska, Agnieszka Nikiforuk, et al. Enhancement of the anti-immobility action of antidepressants by a selective 5-HT7 receptor antagonist in the forced swimming test in mice[J]. Eur J Pharmacol, 2007, 555 (1): 43-47.[16] Lindsay N Cates, Amanda J Roberts, Salvador Huitron-Resendiz, et al. Effects of lurasidone in behavioral models of depression. Role of the 5-HT7 receptor subtype[J]. Neuropharmacology, 2013, 70: 211-217.[17] Gavin Lambert, Mats Johansson, Hans Agren, et al. Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: evidence in support of the catecholamine hypothesis of mood disorders[J]. Arch Gen Psychiatry, 2000, 57(8): 787.[18] Eric Dailly, Frank Chenu, Caroline E Renard, et al. Dopamine, depression and antidepressants[J]. Fundam Clin Pharmacol, 2004, 18(6): 601-607.[19] Song Rui, Zhang Hai-ying, Li Xia, et al. Increased vulnerability to cocaine in mice lacking dopamine D3 receptors[J]. Proc Natl Acad Sci, 2012, 109(43): 17675-17680.[20] Gian Marco Leggio, Vincenzo Micale, Filippo Drago. Increased sensitivity to antidepressants of D3 dopamine receptor-deficient mice in the forced swim test (FST)[J]. Eur Neuropsychopharmacol, 2008, 18(4): 271-277.[21] Xing Bo, Liu Peng, Jiang Wen-hui, et al. Effects of immobilization stress on emotional behaviors in dopamine D3 receptor knockout mice[J]. Behavioural brain research, 2013, 243(15): 261-266.[22] J Hirvonen, J Hietala, J Kajander. Effects of antidepressant drug treatment and psychotherapy on striatal and thalamic dopamine D2/3 receptors in major depressive disorder studied with raclopride PET[J]. J Psychopharmacol, 2011, 25(10): 1329-1336.[23] Anteneh M Feyissa, Agata Chandran, Craig A Stockmeier, et al. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2009, 33 (1): 70-75.[24] Luis E B Bettio, Mauricio P Cunha, Josiane Budni, et al. Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide–cGMP and PI3K/mTOR pathways[J]. Behavioural Brain Research, 2012, 234(2): 137-148.[25] Li Nan-xin, Lee Bo-young, Liu Rong-Jian, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists[J]. Science, 2010, 329 (5994): 959-964.[26] Rodrigo Machado-Vieira, Giacomo Salvadore, Nancy DiazGranados, et al. Ketamine and the next generation of antidepressants with a rapid onset of action[J]. Pharmacol Ther, 2009, 123 (2): 143-150.[27] Anita E Autry, Megumi Adachi, Elena Nosyreva, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses[J]. Nature, 2011, 475 (7354): 91-95.[28] S Chourbaji, M Vogt, F Fumagalli, et al. AMPA receptor subunit 1 (GluR-A) knockout mice model the glutamate hypothesis of depression[J]. The FASEB Journal, 2008, 22 (9): 3129-3134.[29] Malgorzata Wolak, Agata Siwek, Bernadeta Szewczyk, et al. Involvement of NMDA and AMPA receptors in the antidepressant-like activity of antidepressant drugs in the forced swim test[J]. Pharmacol Rep, 2013, 65(991): 991-997. [30] Y Tizabi, B H Bhatti, K F Manaye, et al. Antidepressant-like effects of low ketamine dose is associated with increased hippocampal AMPA/NMDA receptor density ratio in female Wistar–Kyoto rats[J]. Neuroscience, 2012, 213(28): 72-80.[31] Alessandro Barbon, Luca Caracciolo, Cesare Orlandi, et al. Chronic antidepressant treatments induce a time-dependent up-regulation of AMPA receptor subunit protein levels[J]. Neurochem Int, 2011, 59 (6): 896-905.[32] I V Belozertseva, T Kos, P Popik, et al. Antidepressant-like effects of mGluR1 and mGluR5 antagonists in the rat forced swim and the mouse tail suspension tests[J]. Eur Neuropsychopharmacol, 2007, 17 (3): 172-179.[33] Agnieszka Pa?ucha-Poniewiera, Andrzej Pilc. Involvement of mGlu5 and NMDA receptors in the antidepressant-like effect of acamprosate in the tail suspension test[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2012, 39(1): 102-106.[34] Gene G Kinney, Julie A O'Brien, Wei Lemaire, et al. A novel selective positive allosteric modulator of metabotropic glutamate receptor subtype 5 has in vivo activity and antipsychotic-like effects in rat behavioral models[J]. J Pharmacol Exp Ther, 2005, 313 (1): 199-206.[35] Agnieszka Pa?ucha-Poniewiera, Piotr Brański, Tomasz Lenda, et al. The antidepressant-like action of metabotropic glutamate 7 receptor agonist N, N′-bis (diphenylmethyl)-1, 2-ethanediamine (AMN082) is serotonin-dependent[J]. J Pharmacol Exp Ther, 2010, 334(3): 1066-1074. [36] Stefania R Bradley, Jason M Uslaner, Rose B Flick, et al. The mGluR7 allosteric agonist AMN082 produces antidepressant-like effects by modulating glutamatergic signaling[J]. Pharmacol Biochem Behav, 2012, 101(1): 35-40.[37] Vilma Gabbay, Rachel G Klein, Y Katz, et al. The possible role of the kynurenine pathway in adolescent depression with melancholic features[J]. Journal of child psychology and psychiatry, 2010, 51 (8): 935-943.[38] Pierre Blier, Gabriella Gobbi, N Haddjeri, et al. Impact of substance P receptor antagonism on the serotonin and norepinephrine systems: relevance to the antidepressant/anxiolytic response[J]. J Psychiatry Neurosci, 2004, 29 (3): 208-218.[39] Liliane J Dableh, Kiran Yashpal, Joseph Rochford, et al. Antidepressant-like effects of neurokinin receptor antagonists in the forced swim test in the rat[J]. European J Pharmacol, 2005, 507 (1): 99-105.[40] Carmine M Pariante, Stafford L Lightman. The HPA axis in major depression:classical theories and new developments[J].Trends in neurosciences, 2008, 31(9): 464-468.[41] Jose M Pérez-Ortiz, Maria S García-Gutiérrez, Francisco Navarrete, et al. Gene and protein alterations of FKBP5 and glucocorticoid receptor in the amygdala of suicide victims[J]. Psychoneuroendocrinology, 2013, 38(8): 1251-1258.[42] 彭军波, 季丽莉, 金雪花, 等. 糖皮质激素注射建立小鼠行为抑郁症模型[J]. 解剖学研究, 2012, 34(2): 86-88.[43] Gianluigi Guidotti, Francesca Calabrese, Calabrese Anacker, et al. Glucocorticoid receptor and FKBP5 expression is altered following exposure to chronic stress: Modulation by antidepressant treatment[J]. Neuropsychopharmacology, 2013, 38(4): 616-627.[44] Y Dwivedi, H S Rizavi, R C Roberts, et al. Reduced activation and expression of ERK1/2 MAP kinase in the post‐mortem brain of depressed suicide subjects[J]. J Neurochem, 2001, 77 (3): 916-928.[45] Qi Xiao-li, Lin Wen-juan, Wang Dong-lin, et al. A role for the extracellular signal-regulated kinase signal pathway in depressive-like behavior[J]. Behavioural Brain Res, 2009, 199 (2): 203-209.[46] Gilles Mercier, Anna M Lennon, Benjamin Renouf, et al. MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes[J]. J Mol Neurosci, 2004, 24 (2): 207-216.[47] Maya First, Irit Gil-Ad, Michal Taler, et al. The effects of reboxetine treatment on depression-like behavior, brain neurotrophins, and ERK expression in rats exposed to chronic mild stress[J]. J Mol Neurosci, 2013, 50(1): 88-97.[48] Eero Castren. Neurotrophic effects of antidepressant drugs[J]. Curr Opin Pharmacology, 2004, 4 (1): 58-64.[49] Felicien Karege, Guido Bondolfi, Nicola Gervasoni, et al. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity[J]. Biological psychiatry, 2005, 57 (9): 1068-1072.[50] 操军, 王俊, 况利, 等. 抑郁症自杀未遂患者血浆脑源性神经营养因子水平及相关分析[J]. 中国神经精神疾病杂志, 2013, 39(10): 597-601.[51] Alessandra Berry, Veronica Bellisario, Sara Capoccia, et al. Social deprivation stress is a triggering factor for the emergence of anxiety-and depression-like behaviours and leads to reduced brain BDNF levels in C57BL/6J mice[J]. Psychoneuroendocrinology, 2012, 37(6): 762-772.[52] F Angelucci, S Brene, A Mathe. BDNF in schizophrenia, depression and corresponding animal models[J]. Molecular Psychiatry, 2005, 10 (4): 345-352.[53] Laura L Hurley, Luli Akinfiresoye, Evaristus Nwulia, et al. Antidepressant-like effects of curcumin in WKY rat model of depression is associated with an increase in hippocampal BDNF[J]. Behav Brain Res, 2013, 239(15): 27-30. |