神经药理学报 ›› 2012, Vol. 2 ›› Issue (1): 45-64.
• 综述 • 上一篇
赵君,王晋辉
出版日期:
2012-02-26
发布日期:
2013-05-06
通讯作者:
王晋辉,男,研究员,博士生导师;研究方向:神经生理学和神经药理学;联系电话:86-10-64888472,传真:86-10-64871293,Email:jhw@sun5.ibp.ac.cn
作者简介:
国家重点基础研究发展计划(973)基金(N2011CB504405) ,国家自然科学基金 (30990261 和 81171033)
基金资助:
国家重点基础研究发展计划(973)基金(N2011CB504405) ,国家自然科学基金 (30990261 和 81171033)
ZHAO Jun,WANG Jin-hui
Online:
2012-02-26
Published:
2013-05-06
Contact:
王晋辉,男,研究员,博士生导师;研究方向:神经生理学和神经药理学;联系电话:86-10-64888472,传真:86-10-64871293,Email:jhw@sun5.ibp.ac.cn
About author:
赵君,男,中国科学院生物物理研究所博士生;联系电话:86-10-64862572,Email:zhaojun0701@msn.com
Supported by:
国家重点基础研究发展计划(973)基金(N2011CB504405) ,国家自然科学基金 (30990261 和 81171033)
摘要: 得益于生物组织双光子吸收的非线性光学效应,双光子显微镜现在已经成为活体脑功能研究中重要的研究工具。双光子成像具有较深的穿透力、更为集中的空间聚焦、较小的组织损伤性等特征。因此,利用双光子显微镜能够在细胞甚至是亚细胞水平上对活体中的神经细胞结构形态,离子浓度、细胞运动、分子相互作用等生理现象和过程进行直接的成像监测,另外还能进行光裂解、光激活、光转染和光损伤等光学操纵;另一方面,双光子活体成像单细胞分辨率的大范围成像也便于高通量的系统药理学研究。在多年使用双光子显微镜进行活体研究的基础上,我们结合最新的研究进展重点阐述双光子显微镜在神经科学、神经药理学以及疾病动物模型的活体研究中的应用,并探讨其更广阔的前景。
中图分类号:
赵君,王晋辉. 双光子显微镜在神经药理学活体研究中的应用[J]. 神经药理学报, 2012, 2(1): 45-64.
ZHAO Jun,WANG Jin-hui. In Vivo Application of Two-photon Microscopy in Neuropharmacological Research[J]. Acta Neuropharmacologica, 2012, 2(1): 45-64.
[1] Göppert-Mayer Maria. Über Elementarakte mit zwei quantensprüngen [J]. Annalen der Physik, 1931, 401(3): 273-294. [2] Kaiser W, Garrett C G B. 2-Photon Excitation in CaF2 - Eu2+ [J]. Physical Review Letters, 1961, 7(6): 229-231.[3] Abella I D. Optical double-photon absorption in cesium vapor [J]. Physical Review Letters, 1962, 9(11): 453.[4] Berns M W. Possible 2-photon effect in vitro using a focused laser-beam [J]. Biophysical Journal, 1976, 16(8): 973-977.[5] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy [J]. Science, 1990, 248(4951): 73-76.[6] Winfried Denk, Karel Svoboda. Photon upmanship: why multiphoton imaging is more than a gimmick [J]. Neuron, 1997, 18(3): 351-357.[7] Fritjof Helmchen, Winfried Denk. Deep tissue two-photon microscopy [J]. Nat Methods, 2005, 2(12): 932-940.[8] Brian A Wilt, Laurie D Burns, Eric Tatt Wei Ho, et al. Advances in light microscopy for neuroscience [J]. Annu Rev Neurosci, 2009, 32: 435-506.[9] Warren R Zipfel, Rebeca M Williams, Watt W Webb. Nonlinear magic: multiphoton microscopy in the biosciences [J]. Nat Biotechnol, 2003, 21(11): 1369-1377.[10] Alberto Diaspro, Giuseppe Chirico, Maddalena Collini. Two-photon fluorescence excitation and related techniques in biological microscopy [J]. Q Rev Biophys, 2005, 38(2): 97-166.[11] Padmanabhan K, Andrews S E, Fitzpatrick J A. Multi-photon imaging [J]. Curr Protoc Cytom, 2010, Chapter 2: Unit 29.[12] Axel Nimmerjahn, Frank Kirchhoff, Jason N D Kerr, et al. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo [J]. Nat Methods, 2004, 1(1): 31-37.[13] Karel Svoboda, Winfried Denk, David Kleinfeld, et al. In vivo dendritic calcium dynamics in neocortical pyramidal neurons [J]. Nature, 1997, 385(6612): 161-165.[14]Emily A Gibson, Omid Masihzadeh, Tim C Lei, et al. Multiphoton microscopy for ophthalmic imaging [J]. JOphthalmol, 2011, 2011 ,doi:10.1155/2011/870879.[15] Grace E Stutzmann, Ian Parker. Dynamic multiphoton imaging: A live view from cells to systems [J]. Physiology(Bethesda), 2005, 20: 15-21.[16] Yoshikazu Imanishi, Kerrie H Lodowski, Yiannis Koutalos. Two-photon microscopy: shedding light on the chemistry of vision [J]. Biochemistry, 2007, 46(34): 9674-9684.[17] Peter T So, Chen Y Dong, Barry R Masters, et al. Two-photon excitation fluorescence microscopy [J]. Annu Rev Biomed Eng, 2000, 2: 399-429.[18] Norio Takata, Hajime Hirase. Cortical layer 1 and layer 2/3 astrocytes exhibit distinct calcium dynamics in vivo [J]. PLoS ONE, 2008, 3(6): e2525.[19] Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo [J]. Science, 2005, 308(5726): 1314-1318.[20] Hiroaki Wake, Andrew J Moorhouse, Shozo Jinno, et al. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals [J]. J Neurosci, 2009, 29(13): 3974-3980.[21] Hiroyuki Inada, Miho Watanabe, Taku Uchida, et al. GABA regulates the multidirectional tangential migration of GABAergic interneurons in living neonatal mice [J]. PLoS ONE, 2011, 6(12): e27048.[22] Graham C R Ellis-Davies. Two-photon microscopy for chemical neuroscience [J]. Acs Chemical Neuroscience, 2011, 2(4): 185-197.[23] Jamie Grutzendler, Narayanan Kasthuri, Wen-Biao Gan. Long-term dendritic spine stability in the adult cortex [J]. Nature, 2002, 420(6917): 812-816.[24] Joshua T Trachtenberg, Brian E Chen, Graham W Knott, et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex [J]. Nature, 2002, 420(6917): 788-794.[25] Xu Tong-hui, Yu Xin-zhu, Andrew J Perlik, et al. Rapid formation and selective stabilization of synapses for enduring motor memories [J]. Nature, 2009, 462(7275): 915-919.[26] Dan D Stettler, Homare Yamahachi, Li Wu, et al. Axons and synaptic boutons are highly dynamic in adult visual cortex [J]. Neuron, 2006, 49(6): 877-887.[27] Ania K Majewska, Jessica R Newton, Mriganka Sur. Remodeling of synaptic structure in sensory cortical areas in vivo [J]. J Neurosci, 2006, 26(11): 3021-3029.[28] Carlos Portera-Cailliau, Robby M Weimer, Vincenzo De Paola, et al. Diverse modes of axon elaboration in the developing neocortex [J]. PLoS Biol, 2005, 3(8): e272.[29] Hiroshi Nishiyama, Masahiro Fukaya, Masahiko Watanabe, et al. Axonal motility and its modulation by activity are branch-type specific in the intact adult cerebellum [J]. Neuron, 2007, 56(3): 472-487.[30] Jerome Ruel, Christian Chabbert, Regis Nouvian, et al. Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses [J]. J Neurosci, 2008, 28(29): 7313-7323.[31] Martin Fuhrmann, Tobias Bittner, Christian K E Jung, et al. Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer's disease [J]. Nat Neurosci, 2010, 13(4): 411-413.[32] Payam Dibaj, Fabien Nadrigny, Heinz Steffens, et al. NO mediates microglial response to acute spinal cord injury under ATP control in vivo [J]. Glia, 2010, 58(9): 1133-1144.[33] James D Jontes, Michelle R Emond, Stephen J Smith. In vivo trafficking and targeting of N-cadherin to nascent presynaptic terminals [J]. J Neurosci, 2004, 24(41): 9027-9034.[34] Michael J Boulware, Jonathan S Marchant. Timing in cellular Ca2+ signaling [J]. Curr Biol, 2008, 18(17): R769-R776.[35] Michael J Berridge. Neuronal calcium signaling [J]. Neuron, 1998, 21(1): 13-26.[36] Michael J Berridge, Martin D Bootman, H Llewelyn Roderick. Calcium signalling: dynamics, homeostasis and remodelling [J]. Nat Rev Mol Cell Biol, 2003, 4(7): 517-529.[37] Michael J Berridge, Peter Lipp, Martin D Bootman. The versatility and universality of calcium signalling [J]. Nat Rev Mol Cell Biol, 2000, 1(1): 11-21.[38] Katz B, Miledi R. The role of calcium in neuromuscular facilitation [J]. J Physiol, 1968, 195(2): 481-492.[39] Ole H Petersen, Marek Michalak, Alexei Verkhratsky. Calcium signalling: past, present and future [J]. Cell Calcium, 2005, 38(3-4): 161-169.[40] Joshua T Vogelstein, Adam M Packer, Timothy A Machado, et al. Fast non-negative deconvolution for spike train inference from population calcium imaging [J]. J Neurophysiol, 2010, 104(6): 3691–3704.[41] Joshua T Vogelstein, Brendon O Watson, Adam M Packer, et al. Spike inference from calcium imaging using sequential Monte Carlo methods [J]. Biophys J, 2009, 97(2): 636-655.[42] Emre Yaksi, Rainer W Friedrich. Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging [J]. Nat Methods, 2006, 3(5): 377-383.[43] Cendra Agulhon, Jeremy Petravicz, Allison B McMullen, et al. What is the role of astrocyte calcium in neurophysiology? [J]. Neuron, 2008, 59(6): 932-946.[44] Todd A Fiacco, Cendra Agulhon, Ken D McCarthy. Sorting out astrocyte physiology from pharmacology [J]. Annu Rev Pharmacol Toxicol, 2009, 49: 151-174.[45] Axel Nimmerjahn. Astrocytes going live: advances and challenges [J]. J Physiol, 2009, 587(Pt 8): 1639-1647.[46] Doris D Wang, Angelique Bordey. The astrocyte odyssey [J]. Prog Neurobiol, 2008, 86(4): 342-367.[47] Roger Y Tsien. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures [J]. Biochemistry, 1980, 19(11): 2396-2404.[48] Tsien R Y. A non-disruptive technique for loading calcium buffers and indicators into cells [J]. Nature, 1981, 290(5806): 527-528.[49] Loren L Looger, Oliver Griesbeck. Genetically encoded neural activity indicators [J]. Curr Opin Neurobiol, 2012, 22(1): 18-23.[50] Christine Grienberger, Arthur Konnerth. Imaging calcium in neurons [J]. Neuron, 2012, 73(5): 862-885.[51] Karel Svoboda, Ryohei Yasuda. Principles of two-photon excitation microscopy and its applications to neuroscience [J]. Neuron, 2006, 50(6): 823-839.[52] Jens Eilers, Arthur Konnerth. Dye loading with patch pipettes [J]. Cold Spring Harb Protoc, 2009, 2009(4): pdb.prot5201.[53] Shin Nagayama, Shapqun Zeng, Wenhui Xiong, et al. In vivo simultaneous tracing and Ca(2+) imaging of local neuronal circuits [J]. Neuron, 2007, 53(6): 789-803.[54] Christoph Stosiek, Olga Garaschuk, Knut Holthoff, et al. In vivo two-photon calcium imaging of neuronal networks [J]. Proc Natl Acad Sci USA, 2003, 100(12): 7319-7324.[55] Olga Garaschuk, Ruxandra I Milos, Arthur Konnerth. Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo [J]. Nat Protoc, 2006, 1(1): 380-386.[56] Garaschuk O, Konnerth A. In vivo two-photon calcium imaging using multicell bolus loading [J]. Cold Spring Harb Protoc, 2010, 2010(10): pdb.prot5482.[57] Werner Gobel, Fritjof Helmchen. In vivo calcium imaging of neural network function [J]. Physiology (Bethesda), 2007, 22(6): 358-365.[58] Osamu Shimomura, Frank H Johnson, Yo Saiga. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea [J]. J Cell Comp Physiol, 1962, 59(3): 223-239.[59] Rink T J, Tsien R Y, Warner A E. Free calcium in Xenopus embryos measured with ion-selective microelectrodes [J]. Nature, 1980, 283(5748): 658-660.[60] Sharba Bandyopadhyay, Shihab A Shamma, Patrick O. Kanold Dichotomy of functional organization in the mouse auditory cortex [J]. Nat Neurosci, 2010, 13(3): 361-368.[61] Ryohei Yasuda, Esther A Nimchinsky, Volker Scheuss, et al. Imaging calcium concentration dynamics in small neuronal compartments [J]. Sci STKE, 2004, 2004(219): pl5.[62] Gideon Rothschild, Israel Nelken, Adi Mizrahi. Functional organization and population dynamics in the mouse primary auditory cortex [J]. Nat Neurosci, 2010, 13(3): 353-360. [63] Zsuzsanna Varga, Hongbo Jia, Bert Sakmann, et al. Dendritic coding of multiple sensory inputs in single cortical neurons in vivo [J]. Proc Natl Acad Sci USA, 2011, 108(37): 15420-15425.[64] Kazuo Kitamura, Michael Hausser. Dendritic calcium signaling triggered by spontaneous and sensory-evoked climbing fiber input to cerebellar Purkinje cells in vivo [J]. J Neurosci, 2011, 31(30): 10847-10858.[65] Wolfgang Mittmann, Damian J Wallace, Uwe Czubayko, et al. Two-photon calcium imaging of evoked activity from L5 somatosensory neurons in vivo [J]. Nat Neurosci, 2011, 14(8): 1089-1093.[66] Serge Charpak, Jerome Mertz, Emmanuel Beaurepaire, et al. Odor-evoked calcium signals in dendrites of rat mitral cells [J]. Proc Natl Acad Sci USA, 2001, 98(3): 1230-1234.[67] Fritjof Helmchen, Karel Svoboda, Winfried Denk, et al. In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons [J]. Nat Neurosci, 1999, 2(11): 989-996.[68] Karel Svoboda, Fritjof Helmchen, Winfried Denk, et al. Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo [J]. Nat Neurosci, 1999, 2(1): 65-73.[69] Jia Hong-bo, Nathalie L Rochefort, Chen Xiao-wei, et al. In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons [J]. Nat Protoc, 2011, 6(1): 28-35.[70] Chen Xiao-wei, Ulrich Leischner, Nathalie L Rochefort, et al. Functional mapping of single spines in cortical neurons in vivo [J]. Nature, 2011, 475(7357): 501-505.[71] Agens Bonnot, George Z Mentis, Jesse Skoch, et al. Electroporation loading of calcium-sensitive dyes into the CNS [J]. J Neurophysiol, 2005, 93(3): 1793-1808.[72] Kazuhiro Sohya, Katsuro Kameyama, Yuchio Yanagawa, et al. GABAergic neurons are less selective to stimulus orientation than excitatory neurons in layer II/III of visual cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice [J]. J Neurosci, 2007, 27(8): 2145-2149.[73] James Schummers, Yu Hong-bo, Sur Mriganka. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex [J]. Science, 2008, 320(5883): 1638-1643.[74] Kenichi Ohki, R Clay Reid. Specificity and randomness in the visual cortex [J]. Curr Opin Neurobiol, 2007, 17(4): 401-407.[75] Kenichi Ohki, Sooyoung Chung, Yeang H, Ch'ng et al. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex [J]. Nature, 2005, 433(7026): 597-603.[76] Takashi R Sato, Noah W Gray, Zachary F Mainen, et al. The functional microarchitecture of the mouse barrel cortex [J]. PLoS Biol, 2007, 5(7): e189.[77] Jason N D Kerr, Christiaan P de Kock, David S Greenberg, et al. Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex [J]. J Neurosci, 2007, 27(48): 13316-13328.[78] Wang Xiao-hai, Lou Nan-hong, Xu Qi-wu, et al. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo [J]. Nature neurosci, 2006, 9(6): 816-823.[79] Ian R Winship, Nathan Plaa, Timothy H Murphy. Rapid astrocyte calcium signals correlate with neuronal activity and onset of the hemodynamic response in vivo [J]. J Neurosci, 2007, 27(23): 6268-6272.[80] Chen Xiao-ke, Gabitto Mariano, Peng Yue-qing, et al. A gustotopic map of taste qualities in the mammalian brain [J]. Science, 2011, 333(6047): 1262-1266.[81] Dan D Stettler, Richard Axel. Representations of odor in the piriform cortex [J]. Neuron, 2009, 63(6): 854-864.[82] Jorn Niessing, Rainer W Friedrich. Olfactory pattern classification by discrete neuronal network states [J]. Nature, 2010, 465(7294): 47-52.[83] Megan R Sullivan, Axel Nimmerjahn, Dmitry V Sarkisov, et al. In vivo calcium imaging of circuit activity in cerebellar cortex [J]. J Neurophysiol, 2005, 94(2): 1636-1644.[84] Axel Nimmerjahn, Eran A Mukamel, Mark J Schnitzer. Motor behavior activates Bergmann glial networks [J]. Neuron, 2009, 62(3): 400-412.[85] Eran A Mukamel, Axel Nimmerjahn, Mark J Schnitzer. Automated analysis of cellular signals from large-scale calcium imaging data [J]. Neuron, 2009, 63(6): 747-760.[86] Hajime Hirase, Lifen Qian, Pater Bartho, et al. Calcium dynamics of cortical astrocytic networks in vivo [J]. PLoS Biol, 2004, 2(4): E96.[87] Takuya Sasaki, Nahoko Kuga, Shigehiro Namiki, et al. Locally synchronized astrocytes [J]. Cereb Cortex, 2011, 21(8): 1889-1900. [88] Maria Amalia Di Castro, Julien Chuquet, Nicolas Liaudet, et al. Local Ca(2+) detection and modulation of synaptic release by astrocytes [J]. Nature Neuroscience, 2011, 14(10): 1276-1287.[89] Gerhard Eichhoff, Bianca Brawek, Olga Garaschuk. Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo [J]. Biochim Biophys Acta, 2011, 1813(5): 1014-1024.[90] Gerhard Eichhoff, Marc A Busche, Olga Garaschuk. In vivo calcium imaging of the aging and diseased brain [J]. Eur J Nucl Med Mol Imaging, 2008, 35 (Suppl 1): S99-106.[91] Helge C Johannssen, Fritjof Helmchen. In vivo Ca2+ imaging of dorsal horn neuronal populations in mouse spinal cord [J]. J Physiol, 2010, 588(Pt 18): 3397-3402.[92] Frederic Festy, Simon M Ameer-Beg, Tony Ng, et al. Imaging proteins in vivo using fluorescence lifetime microscopy [J]. Mol Biosyst, 2007, 3(6): 381-391.[93] Christian D Wilms, Hatmut Schmidt, Jens Eilers. Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis [J]. Cell Calcium, 2006, 40(1): 73-79.[94] Fritjof Helmchen, David Kleinfeld. Chapter 10 In vivo measurements of blood flow and glial cell function with two-photon laser-scanning microscopy [J]. Methods Enzymol, 2008, 444: 231-254.[95] David Kleinfeld, Partha P Mitra, Fritjof Helmchen, et al. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex [J]. Proc Natl Acad Sci USA, 1998, 95(26): 15741-15746.[96] Andy Y Shih, Jonathan D Driscoll, Patrick J Drew, et al. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain [J]. J Cereb Blood Flow Metab, 2012, 32(7): 1277-1309.[97] Benjamin B Scott, Timothy Gardner, Ni Ji, et al. Wandering neuronal migration in the postnatal vertebrate forebrain [J]. J Neurosci, 2012, 32(4): 1436-1446.[98] Dimitrios Davalos, Jae K Lee, W Bryan Smith, et al. Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy [J]. J Neurosci Methods, 2008, 169(1): 1-7.[99] Julien Chuquet, Pascale Quilichini, Esther A Nimchinsky, et al. Predominant enhancement of glucose uptake in astrocytes versus neurons during activation of the somatosensory cortex [J]. J Neurosci, 2010, 30(45): 15298-15303.[100] Sava Sakadzic, Emmanuel Roussakis, Mohammad A Yaseen, et al. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue [J]. Nat Methods, 2010, 7(9): 755-759.[101] Anna Devor, Sava Sakadzic, Payam A Saisan, et al. "Overshoot" of O2 is required to maintain baseline tissue oxygenation at locations distal to blood vessels [J]. J Neurosci, 2011, 31(38): 13676-13681.[102] Sava Sakadzic, Emmanual Roussakis, Mohammad A Yaseen, et al. Cerebral blood oxygenation measurement based on oxygen-dependent quenching of phosphorescence [J]. J Vis Exp, 2011, 51, doi: 10.3791/1694. [103] Kovalchuk Y, Garaschuk O. Two-Photon chloride imaging using MQAE in vitro and in vivo [J]. Cold Spring Harb Protoc, 2012, 2012(7):778-785. [104] Kuan Hong Wang, Ania Majewska, James Schummers, et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex [J]. Cell, 2006, 126(2): 389-402. [105] Bart G Borghuis, Tian Lin, Xu Ying, et al. Imaging light responses of targeted neuron populations in the rodent retina [J]. J Neurosci, 2011, 31(8): 2855-2867.[106] Wei Tao, Timm Schubert, Francois Paquet-Durand, et al. Light-driven calcium signals in mouse cone photoreceptors [J]. J Neurosci, 2012, 32(20): 6981-6994.[107] Diana L Pettit, George J Augustine. Chemical two-photon uncaging [J]. CSH Protoc, 2007, 2007: pdb.prot4850.[108] Srinivas Kantevari, Judit K Makara, Attila Losonczy, et al. Development of anionically decorated 2-(ortho-nitrophenyl)-propyl-caged neurotransmitters for photolysis in vitro and in vivo [J]. Chembiochem, 2011, 12(3): 346[109] Jun Noguchi, Akira Nagaoka, Satoshi Watanabe, et al. In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice [J]. J Physiol, 2011, 589(Pt 10): 2447-2457.[110] Edward S Boyden, Feng Zhang, Ernst Bamberg, et al. Millisecond-timescale, genetically targeted optical control of neural activity [J]. Nat Neurosci, 2005, 8(9): 1263-1268.[111] John Peter Rickgauer, David W Tank. Two-photon excitation of channelrhodopsin-2 at saturation [J]. Proc Natl Acad Sci USA, 2009, 106(35): 15025-15030.[112] Bertalan K Andrasfalvy, Boris V Zemelman, Jianyong Tang, et al. Two-photon single-cell optogenetic control of neuronal activity by sculpted light [J]. Proc Natl Acad Sci USA, 2010, 107(26): 11981-11986.[113] Hirase H, Nikolenko V, Yuste R. Multiphoton stimulation of neurons and spines [J]. Cold Spring Harb Protoc, 2012, 2012(4): pdb.prot068569.[114] Uday K Tirlapur, Karsten Konig. Targeted transfection by femtosecond laser [J]. Nature, 2002, 418(6895): 290-291.[115] Lindy E Barrett, Jai Yoon Sul, Hajime Takano, et al. Region-directed phototransfection reveals the functional significance of a dendritically synthesized transcription factor [J]. Nat Methods, 2006, 3(6): 455-460.[116] Vikram Kohli, Vanesa Robles, M Leonor Cancela, et al. An alternative method for delivering exogenous material into developing zebrafish embryos [J]. Biotechnol Bioeng, 2007, 98(6): 1230-1241.[117] Kelley D Sullivan, Edward B Brown. Multiphoton fluorescence recovery after photobleaching in bounded systems [J]. Phys Rev E Stat Nonlin Soft Matter Phys, 2011, 83(5): 051916.[118] Vivek K Unni, Tamliy A Weissman, Edward Rockenstein, et al. In vivo imaging of alpha-synuclein in mouse cortex demonstrates stable expression and differential subcellular compartment mobility [J]. PLoS One, 2010, 5(5): e10589.[119] Wu Tao, Samarendra Mohanty, Veronica Gomez-Godinez, et al. Neuronal growth cones respond to laser-induced axonal damage [J]. J R Soc Interface, 2012, 9(68): 535-547.[120] Daniel Stockholm, Marc Bartoli, Guillaume Sillon, et al. Imaging calpain protease activity by multiphoton FRET in living mice [J]. J Mol Biol, 2005, 346(1): 215-222.[121] Corentin Spriet, Dave Trinel, Frank Riquet, et al. Enhanced FRET contrast in lifetime imaging [J]. Cytometry A, 2008, 73(8): 745-753.[122] Eishu Hirata, Hiroko Yukinaga, Yuji Kamioka, et al. In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion [J]. J Cell Sci, 2012, 125(4): 858-868.[123] Amanda F Mower, Showming Kwok, Hongbo Yu, et al. Experience-dependent regulation of CaMKII activity within single visual cortex synapses in vivo [J]. Proc Natl Acad Sci USA, 2011, 108(52): 21241-21246.[124] Mattes Lahn, Carsten Dosche, Carsten Hille. Two-photon microscopy and fluorescence lifetime imaging reveal stimulus-induced intracellular Na+ and Cl- changes in cockroach salivary acinar cells [J]. Am J Physiol Cell Physiol, 2011, 300(6): C1323-1336.[125] Chang Ching-wei, Mary Ann Mycek. Precise fluorophore lifetime mapping in live-cell, multi-photon excitation microscopy [J]. Opt Express, 2010, 18(8): 8688-8696.[126] Carsten Hille, Mattes Lahn, Hans Gerd Lohmannsroben, et al. Two-photon fluorescence lifetime imaging of intracellular chloride in cockroach salivary glands [J]. Photochem Photobiol Sci, 2009, 8(3): 319-327.[127] Gael Moneron, Stefan W Hell. Two-photon excitation STED microscopy [J]. Opt Express, 2009, 17(17): 14567-14573.[128] Kazuo Kitamura, Benjamin Judkewitz, Masanobu Kano, et al. Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo [J]. Nat Methods, 2008, 5(1): 61-67.[129] Kazuo Kitamura. Two-photon targeted patch-clamp recordings in vivo [J]. Patch Springer Protocols Handbooks, 2012, 61: 183-193.[130] Kitamura K. Prospect of in vivo targeted whole-cell recording using two-photon microscopy [J]. Neurosci Res, 2008, 61: S28-S28.[131] Luc J Gentet, Michael Avermann, Feranc Matyas, et al. Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice [J]. Neuron, 2010, 65(3): 422-435.[132] Wei Wei, Justin Elstrott, Marla B Feller. Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina [J]. Nat Protoc, 2010, 5(7): 1347-1352.[133] Davi D Bock, Wei-chung Allen Lee, Aaron M Kerlin, et al. Network anatomy and in vivo physiology of visual cortical neurons [J]. Nature, 2011, 471(7337): 177-182.[134] Ho Ko, Sonja B Hofer, Bruno Pichler, et al. Functional specificity of local synaptic connections in neocortical networks [J]. Nature, 2011, 473(7345): 87-91.[135] James A Fitzpatrick, Susan K Andreko, Lauren A Ernst, et al. Long-term persistence and spectral blue shifting of quantum dots in vivo [J]. Nano Lett, 2009, 9(7): 2736-2741.[136] Debasish Sen, Thomas J Deerinck, Mark H Ellisman, et al. Quantum dots for tracking dendritic cells and priming an immune response in vitro and in vivo [J]. PLoS One, 2008, 3(9): e3290.[137] Kurt F Ahrens, Barbara Heider, Hanson Lee, et al. Two-photon scanning microscopy of in vivo sensory responses of cortical neurons genetically encoded with a fluorescent voltage sensor in rat [J]. Front Neural Circuits, 2012, doi: 10.3389/fncir.2012.00015.[138] Ryota Homma, Bradley J Baker, Lei Jin, et al. Wide-field and two-photon imaging of brain activity with voltage- and calcium-sensitive dyes [J]. Philos Trans R Soc Lond B Biol Sci, 2009, 364(1529): 2453-2467.[139] Kuhn B, Denk W, Bruno R M. In vivo two-photon voltage-sensitive dye imaging reveals top-down control of cortical layers 1 and 2 during wakefulness [J]. Proc Natl Acad Sci USA, 2008, 105(21): 7588-7593.[140] Anna Letizia Allegra Mascaro, Leonardo Sacconi, Francesco S Pavone. Multi-photon nanosurgery in live brain [J]. Front Neuroenergetics, 2010, 2: 21.[141] Zuo Yi, Yang Guang, Kwon Elaine, et al. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex [J]. Nature, 2005, 436(7048): 261-265.[142] Daniela Tropea, Ania K Majewska, Rodrigo Garcia, et al. Structural dynamics of synapses in vivo correlate with functional changes during experience-dependent plasticity in visual cortex [J]. J Neurosci, 2010, 30(33): 11086-11095.[143] Conor Liston, Wen-biao Gan. Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo [J]. Proc Natl Acad Sci USA, 2011, 108(38): 16074-16079.[144] Grace E Stutzmann, Ian Parker. Dynamic multiphoton imaging: a live view from cells to systems [J]. Physiology (Bethesda), 2005, 20: 15-21. [145] Yuji Ikegaya. Large-scale recordings for drug screening in neural circuit systems [J]. Yakugaku Zasshi, 2008, 128(9): 1251-1257.[146] Naoya Takahashi, Yuji Takahara, Daisuke Ishikawa, et al. Functional multineuron calcium imaging for systems pharmacology [J]. Anal Bioanal Chem, 2010, 398(1): 211-218.[147] Christie R H, Bacskai B J, Zipfel W R, et al. Growth arrest of individual senile plaques in a model of Alzheimer's disease observed by in vivo multiphoton microscopy [J]. J Neurosci, 2001, 21(3): 858-864.[148] Christie R, Kimchi E, Kajdasz S, et al. Multiphoton microscopy and amyloid angiopathy [J]. Amyloid, 2001, 8 (Suppl 1): 48-50.[149] Brian J Bacskai, William E Klunk, Chester A Mathis, et al. Imaging amyloid-beta deposits in vivo [J]. J Cereb Blood Flow Metab, 2002, 22(9): 1035-1041.[150] Klunk W E, Bacskai B J, Mathis C A, et al. Imaging Abeta plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative [J]. J Neuropathol Exp Neurol, 2002, 61(9): 797-805.[151] Gerhard Eichhoff, Olga Garaschuk. Two-photon imaging of neural networks in a mouse model of Alzheimer's disease [J]. Cold Spring Harb Protoc, 2011, 2011(10): 1206-1216.[152] Jaime Grutzendler, Gan Wen-biao. Two-photon imaging of synaptic plasticity and pathology in the living mouse brain [J]. NeuroRx, 2006, 3(4): 489-496.[153] Christian K E Jung, Martin Fuhrmann, Kamran Honarnejad, et al. Role of presenilin 1 in structural plasticity of cortical dendritic spines in vivo [J]. J Neurochem, 2011, 119(5): 1064-1073.[154] Tobias Bittner, Martin Fuhrmann, Steffen Burgold, et al. Multiple events lead to dendritic spine loss in triple transgenic Alzheimer's disease mice [J]. PLoS One, 2010, 5(11): e15477.[155] Marc Aurel Busche, Gerhard Eichhoff, Helmuth Adelsberger, et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease [J]. Science, 2008, 321(5896): 1686-1689.[156] Kishore V Kuchibhotla, Carli R Lattarulo, Bradley T Hyman, et al. Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice [J]. Science, 2009, 323(5918): 1211-1215.[157] Tristan Bolmont, Florent Haiss, Daniel Eicke, et al. Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance [J]. J Neurosci, 2008, 28(16): 4283-4292.[158] Liu Zhi-qiang, Carlo Condello, Aaron Schain, et al. CX3CR1 in microglia regulates brain amyloid deposition through selective protofibrillar amyloid-beta phagocytosis [J]. J Neurosci, 2010, 30(50): 17091-17101.[159] Payam Dibaj, Heinz Steffens, Jana Zschuntzsch, et al. In vivo imaging reveals rapid morphological reactions of astrocytes towards focal lesions in an ALS mouse model [J]. Neurosci Lett, 2011, 497(2): 148-151.[160] Payam Dibaj, Heinz Steffens, Jana Zschuntzsch, et al. In vivo imaging reveals distinct inflammatory activity of CNS microglia versus PNS macrophages in a mouse model for ALS [J]. PLoS One, 2011, 6(3): e17910.[161] Albrecht Sigler, Timothy H Murphy. In vivo 2-photon imaging of fine structure in the rodent brain: before, during, and after stroke [J]. Stroke, 2010, 41(10 Suppl): S117-123.[162] Timothy H Murphy, Li Ping, Betts Kellen, et al. Two-photon imaging of stroke onset in vivo reveals that NMDA-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines [J]. J Neurosci, 2008, 28(7): 1756-1772.[163] Zhang Sheng-xiang, Jamie Boyd, Kerry Delaney, et al. Rapid reversible changes in dendritic spine structure in vivo gated by the degree of ischemia [J]. J Neurosci, 2005, 25(22): 5333-5338.[164] Zhang Sheng-xiang, Timothy H Murphy. Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo [J]. PLoS Biol, 2007, 5(5): e119.[165] Craig E Brown, Jamie D Boyd, Timothy H Murphy. Longitudinal in vivo imaging reveals balanced and branch-specific remodeling of mature cortical pyramidal dendritic arbors after stroke [J]. J Cereb Blood Flow Metab, 2010, 30(4): 783-791.[166] Ricardo Mostany, Tara G Chowdhury, David G Johnston, et al. Local hemodynamics dictate long-term dendritic plasticity in peri-infarct cortex [J]. J Neurosci, 2010, 30(42): 14116-14126.[167] Ricardo Mostany, Carlos Portera-Cailliau. Absence of large-scale dendritic plasticity of layer 5 pyramidal neurons in peri-infarct cortex [J]. J Neurosci, 2011, 31(5): 1734-1738.[168] Ding Shing-hua, Tommaso Fellin, Zhu Ying-zi, et al. Enhanced astrocytic Ca2+ signals contribute to neuronal excitotoxicity after status epilepticus [J]. J Neurosci, 2007, 27(40): 10674-10684.[169] Andy Y Shih, Beth Friedman, Patrick J Drew, et al. Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke [J]. J Cereb Blood Flow Metab, 2009, 29(4): 738-751.[170] Hee-Pyoung Park, Anitha Nimmagadda, Richard A DeFazio, et al. Albumin therapy augments the effect of thrombolysis on local vascular dynamics in a rat model of arteriolar thrombosis: a two-photon laser-scanning microscopy study [J]. Stroke, 2008, 39(5): 1556-1562.[171] Nicholas Rensing, Yannan Ouyang, Yang Xiao-feng, et al. In vivo imaging of dendritic spines during electrographic seizures [J]. Ann Neurol, 2005, 58(6): 888-898.[172] Zeng Ling-hui, Xu Lin, Nicholas R Rensing, et al. Kainate seizures cause acute dendritic injury and actin depolymerization in vivo [J]. J Neurosci, 2007, 27(43): 11604-11613.[173] Tian Guo-feng, Hooman Azmi, Takahiro Takano, et al. An astrocytic basis of epilepsy [J]. Nat Med, 2005, 11(9): 973-981.[174] D Sesath Hewapathirane, Kurt Haas. Single cell electroporation in vivo within the intact developing brain [J]. J Vis Exp, 2008, doi 10.3791/705. [175] Sun Kwang Kim, Kei Eto, Junichi Nabekura. Synaptic structure and function in the mouse somatosensory cortex during chronic pain: in vivo two-photon imaging [J]. Neural Plast, 2012, 2012: 640259.[176] Sun Kwang Kim, Junichi Nabekura. Rapid synaptic remodeling in the adult somatosensory cortex following peripheral nerve injury and its association with neuropathic pain [J]. J Neurosci, 2011, 31(14): 5477-5482.[177] Kei Eto, Hiroaki Wake, Miho Watanabe, et al. Inter-regional contribution of enhanced activity of the primary somatosensory cortex to the anterior cingulate cortex accelerates chronic pain behavior [J]. J Neurosci, 2011, 31(21): 7631-7636.[178] Dimitrios Davalos, Jaime Grutzendler, Guang Yang, et al. ATP mediates rapid microglial response to local brain injury in vivo [J]. Nat Neurosci, 2005, 8(6): 752-758.[179] Thomas H Chia, Michael J Levene. Microprisms for in vivo multi-layer cortical imaging [J]. J Neurophysiol, 2009, 102(2): 1310-1314.[180] Demirhan Kobat, Nicholas G Horton, Chris Xu. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex [J]. J Biomed Opt, 2011, 16(10): 106014.[181] Benjamin F Grewe, Dominik Langer, Hansjrg Kasper, et al. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision [J]. Nat Methods, 2010, 7(5):399-405.[182] Brendon O Watson, Volodymyr Nikolenko, Rafael Yuste. Two-photon imaging with diffractive optical elements [J]. Front Neural Circuits, 2009, 3: 6.[183] Shigehiro Namiki, Norio Matsuki, Ikegaya Yuji. Large-scale imaging of brain network activity from >10,000 neocortical cells [J]. Nature Precedings, 2009, hdl:10101/npre.2009.2893.1.[184] Gergely Katona, Gergely Szalay, Pal Maak, et al. Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes [J]. Nat Methods, 2012, 9(2): 201-208.[185] Werner Gobel, Bjorn M Kampa, Fritjof Helmchen. Imaging cellular network dynamics in three dimensions using fast 3D laser scanning [J]. Nat Methods, 2007, 4(1): 73-79.[186] David S Greenberg, Arthur R Houweling, Jason N Kerr. Population imaging of ongoing neuronal activity in the visual cortex of awake rats [J]. Nat Neurosci, 2008, 11(7): 749-751.[187] James T Russell. Imaging calcium signals in vivo: a powerful tool in physiology and pharmacology [J]. Br J Pharmacol, 2011, 163(8): 1605-1625.[188] Henry Lutcke, Masanori Murayama, Thomas Hahn, et al. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice [J]. Front Neural Circuits, 2010, 4: 9. [189] Benjamin F Grewe, Fritjof Helmchen. Optical probing of neuronal ensemble activity [J]. Curr Opin Neurobiol, 2009, 19(5): 520-529. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||