神经药理学报 ›› 2012, Vol. 2 ›› Issue (1): 33-44.
XIA Zhi1, ZHANG Ying-mei 1,2, REN Jun1
出版日期:
2012-02-26
发布日期:
2013-05-06
通讯作者:
REN Jun, male, Professor and PhD Advisor; Research Direction: Cardiovascular and neurological pharmacology; Tel: +1-307-766-6131, E-mail: jren@uwyo.edu
作者简介:
XIA Zhi, male, PhD Candidate; Research Direction: Cardiovascular physiology; E-mail: xiazhi@genomics.cn
基金资助:
美国国立卫生院( No.NIH P20RR1064748, No.NIH P20 GM103432)
XIA Zhi1, ZHANG Ying-mei 1,2, REN Jun1
Online:
2012-02-26
Published:
2013-05-06
Contact:
REN Jun, male, Professor and PhD Advisor; Research Direction: Cardiovascular and neurological pharmacology; Tel: +1-307-766-6131, E-mail: jren@uwyo.edu
About author:
XIA Zhi, male, PhD Candidate; Research Direction: Cardiovascular physiology; E-mail: xiazhi@genomics.cn
Supported by:
美国国立卫生院( No.NIH P20RR1064748, No.NIH P20 GM103432)
摘要: 代谢综合征是指包括肥胖、脂质代谢紊乱、高血压和胰岛素抵抗在内的代谢异常症候群,是心血管和神经系统疾病的独立危险因素,发病过程中伴有脂肪因子(细胞因子和趋化因子)和瘦素的分泌失调。这些改变调节免疫、炎症反应,引起下丘脑饱食中枢的失衡。代谢综合征和神经系统疾病(如中风、抑郁症、阿兹海默病)存在相关性的分子机制目前尚不清楚。目前已知的联系代谢综合征和心血管疾病、神经疾病的分子和细胞机制包括:氧应激、糖、脂代谢的改变,胰岛素、瘦素分泌异常,凋亡和自噬等。最新研究表明,内质网应激反应(或未折叠蛋白反应)在代谢综合征患者的各个组织中被激活。下丘脑的内质网应激与炎症和瘦素、胰岛素抵抗有关。肝脏的内质网应激导致脂质沉积和胰岛素抵抗,而脂肪组织中的内质网应激触发炎症反应,调节脂肪因子的分泌。同时炎症反应可以进一步恶化内质网应激。另外,内质网应激直接导致自噬的发生而自噬可进一步加剧内质网应激。这些内质网应激与细胞损伤机制的相互作用可以影响胰岛素信号转导从而参与代谢综合征的发病。本文不仅综述了近期关于代谢综合征引起的心血管和神经系统疾病的发病机制,也分析了内质网应激在代谢综合征所致心血管和神经系统疾病中的作用。
中图分类号:
XIA Zhi, ZHANG Ying-mei, REN Jun. Endoplasmic Reticulum Stress and Metabolic Syndrome: Mechanisms and Therapeutic Potential / 内质网应激与代谢综合征的机制及治疗潜能[J]. 神经药理学报, 2012, 2(1): 33-44.
XIA Zhi, ZHANG Ying-mei, REN Jun. Endoplasmic Reticulum Stress and Metabolic Syndrome: Mechanisms and Therapeutic Potential[J]. ACTA NEUROPHARMACOLOGICA, 2012, 2(1): 33-44.
[1] Cho LW. Metabolic syndrome[J]. Singapore Med J, 2011, 52(11):779-785.[2] Akhlaq A Farooqui, Tahira Farooqui, Francesco Panza, et al. Metabolic syndrome as a risk factor for neurological disorders[J]. Cell Mol Life Sci, 2012, 69(5):741-762.[3] Ralph A DeFronzo, Muhammad Abdul-Ghani. Assessment and treatment of cardiovascular risk in prediabetes: impaired glucose tolerance and impaired fasting glucose [J]. Am J Cardiol, 2011, 108(3):3B-24B.[4] Whaley-Connell A, McCullough PA, Sowers JR. The role of oxidative stress in the metabolic syndrome[J]. Rev Cardiovasc Med, 2011, 12(1):21-29.[5] Cynthia L. Ogden, Susan Z. Yanovski, Margaret D. Carroll, et al. The epidemiology of obesity [J]. Gastroenterology, 2007, 132(6):2087-2102.[6] Katherine M Flegal, Margaret D Carroll, Carroll L Ogden, et al. Prevalence and trends in obesity among US adults[J]. JAMA, 2010, 303(3):235-241.[7] Vazzana N, Santilli F, Sestili S, et al. Determinants of increased cardiovascular disease in obesity and metabolic syndrome[J]. Curr Med Chem, 2011, 18(34):5267-5280.[8] Christopher P Cannon. Cardiovascular disease and modifiable cardiometabolic risk factors [J]. Clin Cornerstone, 2007, 8(3):11-28.[9] Ravi Nistala, Melvin R Hayden, Vincent G Demarco, et al. Prenatal programming and epigenetics in the genesis of the cardiorenal syndrome[J]. Cardiorenal Med, 2011, 1(4):243-254.[10] Ana Barac, Hong Wang, Nawar M. Shara, et al. Markers of inflammation, metabolic risk factors, and incident heart failure in american indians: the strong heart study [J]. J Clin Hypertens (Greenwich), 2012, 14(1):13-19.[11] Franco Folli, Domenico Corradi, Paolo Fanti, et al. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach [J]. Curr Diabetes Rev, 2011, 7(5):313-324.[12] Jose A Luchsinger, Deborah R Gustafson. Adiposity, type 2 diabetes, and Alzheimer's disease [J]. J Alzheimer's Dis, 2009, 16(4):693-704.[13] Vincenza Frisardi, Vincenzo Solfrizzi, Cristiano Capurso, et al. Is insulin resistant brain state a central feature of the metabolic-cognitive syndrome? [J]. J Alzheimer's Dis, 2010, 21(1):57-63.[14] Tamas Halmos, Iiona Suba. Role of the brain in the regulation of metabolism and energy expenditure: the central role of insulin, and insulin resistance of the brain[J]. Orv Hetil, 2011, 152(3):83-91.[15] Eva Tomas, Jenna A Wood, Violeta Stanojevic, et al. GLP-1-derived nonapeptide GLP-1(28-36)amide inhibits weight gain and attenuates diabetes and hepatic steatosis in diet-induced obese mice[J]. Regul Pept, 2011, 169(1-3):43-48.[16] Ren Jun, Robert O. Kelley. Cardiac health in women with metabolic syndrome: clinical aspects and pathophysiology [J]. Obesity (Silver Spring), 2009, 17(6):1114-1123.[17] Loren E. Wold, Asli F. Ceylan-Isik, Ren Jun. Oxidative stress and stress signaling: menace of diabetic cardiomyopathy [J]. Acta Pharmacol Sin, 2005, 26(8):908-917.[18] George L. Bakris, James R. Sowers. Treatment of hypertension in patients with diabetes-an update [J]. J Am Soc Hypertens, 2010, 3(2):150-155.[19] Sowers JR, Bakris GL, Black HR, et al. The cardiometabolic syndrome and calcium channel blocker combination drugs [J]. J Cardiometab Syndr, 2007, 2(3):207-212.[20] Mollie A. Jay, Ren Jun. Peroxisome proliferator-activated receptor (PPAR) in metabolic syndrome and type 2 diabetes mellitus [J]. Curr Diabetes Rev, 2007, 3(1):33-39.[21] Guido Lastra-Gonzalez, Camila M Manrique, Gurushankar Govindarajan, et al. Insights into the emerging cardiometabolic prevention and management of diabetes mellitus[J]. Expert Opin Pharmacother, 2005, 6(13):2209-2221.[22] Ludovic Pineau, Jenny Colas, Sebastien Dupont, et al. Lipid-induced ER stress: synergistic effects of sterols and saturated fatty acids [J]. Traffic, 2009, 10(6):673-690.[23] Gokhan S. Hotamisligil. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease [J]. Cell, 2010, 140(6):900-917.[24] Margaret F. Gregor, Gokhan S. Hotamisligil. Thematic review series: adipocyte biology. adipocyte stress: the endoplasmic reticulum and metabolic disease[J]. J Lipid Res, 2007, 48(9):1905-1914.[25] Gokhan S. Hotamisligil. Inflammation and endoplasmic reticulum stress in obesity and diabetes [J]. Int J Obes (Lond), 2008, 32( Suppl 7):S52-54. [26] Sung Hoon Back, Martin Schroder, Kyungho Lee, et al. ER stress signaling by regulated splicing: IRE1/HAC1/XBP1 [J]. Methods, 2005, 35(4):395-416.[27] Margaret M. Kincaid, Antony A. Cooper. ERADicate ER stress or die trying [J]. Antioxid Redox Signal, 2007, 9(12):2373-2387.[28] Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease [J]. Neurology, 2006, 66(2):S102-109.[29] Mathieu Latreille, Marie-Kristine Laberge, Genevieve Bourret, et al. Deletion of Nck1 attenuates hepatic ER stress signaling and improves glucose tolerance and insulin signaling in liver of obese mice[J]. Am J Physiol Endocrinol Metab, 2011, 300(3):E423-434.[30] Randal J. Kaufman, Donalyn Scheuner, Martin Schroder, et al. The unfolded protein response in nutrient sensing and differentiation [J]. Nat Rev Mol Cell Biol, 2002, 3(6):411-421.[31] Iiham Kharroubi, Laurence Ladriere, Alessandra K. Cardozo, et al. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress [J]. Endocrinology, 2004, 145(11):5087-5096.[32] Yanjun Ma, Linda M. Hendershot. The unfolding tale of the unfolded protein response [J]. Cell, 2001, 107(7):827-830.[33] Michael J Berridge. The endoplasmic reticulum: a multifunctional signaling organelle [J]. Cell Calcium, 2002, 32(5-6):235-249.[34] Lale Ozcan, Ayse Seda Ergin, Allen Lu, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance[J]. Cell Metab, 2009, 9(1):35-51.[35] Gabor Banhegyi, Peter Baumeister, Angelo Benedetti, et al. Endoplasmic reticulum stress [J]. Ann NY Acad Sci, 2007, 1113:58-71.[36] Nair Sreejayan, Feng Dong, Machender R. Kandadi, et al. Chromium alleviates glucose intolerance, insulin resistance, and hepatic ER stress in obese mice [J]. Obesity (Silver Spring), 2008, 16(6):1331-1337.[37] Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes [J]. Science, 2004, 306(5695):457-461.[38] Guenther Boden, Xunbao Duan, Carol Homko, et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals[J]. Diabetes, 2008, 57(9):2438-2444.[39] Margaret F. Gregor, Ling Yang, Elisa Fabbrini, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss [J]. Diabetes, 2009, 58(3):693-700.[40] Neeraj K. Sharma, Swapan K. Das, Ashis K. Mondal, et al. Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects[J]. J Clin Endocrinol Metab, 2008, 93(11):4532-4541.[41] GP Sykiotis, AG Papavassiliou. Serine phosphorylation of insulin receptor substrate-1: a novel target for the reversal of insulin resistance[J]. Mol Endocrinol, 2001, 15(11):1864-1869.[42] Rui Liang-you, Tracey L. Fisher, Jeffrey Thomas, et al. Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2[J]. J Biol Chem, 2001, 276(43):40362-40367.[43] Hiderou Yoshida, Satomi Nadanaka, Ryuichiro Sato, et al. XBP1 is critical to protect cells from endoplasmic reticulum stress: evidence from Site-2 protease-deficient Chinese hamster ovary cells [J]. Cell Struct Funct, 2006, 31(2):117-125.[44] Melek C. Arkan, Andrea L. Hevener, Florian R. Greten, et al. IKK-beta links inflammation to obesity-induced insulin resistance[J]. Nat Med, 2005, 11(2):191-198.[45] Cai Dong-sheng, Yuan Min-sheng, Daniel F. Frantz, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB [J]. Nat Med, 2005, 11(2):183-190.[46] Steven E. Shoelson, Jongsoon Lee, Allison B. Goldfine. Inflammation and insulin resistance[J]. J Clin Invest, 2006, 116(7):1793-1801.[47] Umut Ozcan, Erank Yilmaz, Lale Ozcan, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes[J]. Science, 2006, 313:1137-1140.[48] Asli F. Ceylan-Isik, Nair Sreejayan, Ren Jun. Endoplasmic reticulum chaperon tauroursodeoxycholic acid alleviates obesity-induced myocardial contractile dysfunction [J]. J Mol Cell Cardiol, 2011, 50(1):107-116.[49] Beth Levine, Noboru Mizushima, Herbert W. Virgin. Autophagy in immunity and inflammation [J]. Nature, 2011, 469(7330):323-335.[50] Kolattukudy PE, Niu J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway [J]. Circ Res, 2012, 110(1):174-189.[51] Kouroku Y, Fujita E, Tanida I, et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation [J]. Cell Death Differ, 2007, 14(2):230-239.[52] Maiko Ogata, Shin-ichiro Hino, Atsushi Saito, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress [J]. Mol Cell Biol, 2006, 26(24):9220-9231.[53] Elizabeth L. Axe, Simom A. Walker, Maria Manifava, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum[J]. J Cell Biol, 2008, 182(4):685-701.[54] Razi Minoo, Edmond Y. Chan, Sharon A. Tooze. Early endosomes and endosomal coatomer are required for autophagy [J]. J Cell Biol, 2009, 185(2):305-321.[55] Ding Wen-xing, Yin Xiao-ming. Sorting, recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome [J]. Autophagy, 2008, 4(2):141-150.[56] Yang Ling, Li Ping, Fu Suneng, et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance [J]. Cell Metab, 2010, 11(6):467-478.[57] Xu X, Ren J. Unmasking the janus faces of autophagy in obesity-associated insulin resistance and cardiac dysfunction[J]. Clin Exp Pharmacol Physiol, 2011, 39(2):200-208.[58] Allison A. Ellington, Mark A. Berhow, Keith W. Singletary. Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells[J]. Carcinogenesis, 2006, 27(2):298-306.[59] Cristina Mammucari, Giulia Milan, Vanina Romanello, et al. FoxO3 controls autophagy in skeletal muscle in vivo [J]. Cell Metab, 2007, 6(6):458-471.[60] Xie Zhiping, Daniel J. Klionsky. Autophagosome formation: core machinery and adaptations [J]. Nat Cell Biol, 2007, 9(10):1102-1109.[61] David C. Rubinsztein, Guillermo Marino, Guido Kroemer. Autophagy and aging[J]. Cell, 2011, 146(5):682-695.[62] Othon B. Kotoulas, Stefanos A. Kalamidas, Dimitrios J. Kondomerkos. Glycogen autophagy [J]. Microsc Res Tech, 2004, 64(1):10-20.[63] Sebastian Bernales, Sebastian Schuck, Peter Walter. ER-phagy: selective autophagy of the endoplasmic reticulum [J]. Autophagy, 2007, 3(3):285-287.[64] Zhou Li-jun, Zhang Jing-jing, Fang Qi-chen, et al. Autophagy-mediated insulin receptor down-regulation contributes to endoplasmic reticulum stress-induced insulin resistance [J]. Mol Pharmacol, 2009, 76(3):596-603.[65] Christian Appenzeller-Herzog, Michael N. Hall. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling [J]. Trends Cell Biol, 2012, 22(5):274-282.[66] Ferrero-Miliani L, Nielsen OH, Andersen PS, et al. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation [J]. Clin Exp Immunol, 2007, 147(2):227-235.[67] Gokhan S. Hotamisligil. Inflammation and metabolic disorders [J]. Nature, 2006, 444(7121):860-867.[68] Gokhan S Hotamisligil. Role of endoplasmic reticulum stress and c-Jun NH2-terminal kinase pathways in inflammation and origin of obesity and diabetes [J]. Diabetes, 2005, 54(Suppl 2):S73-78.[69] Robert W O'Rourke. Inflammation in obesity-related diseases [J]. Surgery, 2009, 145(3):255-259.[70] Ferrante AW Jr. Obesity-induced inflammation: a metabolic dialogue in the language of inflammation [J]. J Intern Med, 2007, 262(4):408-414.[71] Sumaira Z Hasnain, Rohan Lourie, Indrajit Das, et al. The interplay between endoplasmic reticulum stress and inflammation [J]. Immunol Cell Biol, 2012, 90(3):260-270.[72] Miriam Cnop, Fabienne Foufelle, Licio A Velloso. Endoplasmic reticulum stress, obesity and diabetes[J]. Trends Mol Med, 2012, 18(1):59-68.[73] Zhang Xiao-qing, Zhang Guo, Zhang Hai, et al. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity [J]. Cell, 2008, 135(1):61-73.[74] Hu Ping, Zhang Han, Anthony D Couvillon, et al. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression[J]. Mol Cell Biol, 2006, 26(8):3071-3084.[75] Kathryn E. Wellen, Gokhan S Hotamisligil. Inflammation, stress, and diabetes [J]. J Clin Invest, 2005, 115(5):1111-1119.[76] Decio L Eizirik, Alessandra K. Cardozo, Miriam Cnop. The role for endoplasmic reticulum stress in diabetes mellitus [J]. Endocr Rev, 2008, 29(1):42-61.[77] Zhang Kezhong, Randal J Kaufman. From endoplasmic-reticulum stress to the inflammatory response [J]. Nature, 2008, 454(7203):455-462.[78] Maximilian Zeyda, Thomas M Stulnig. Obesity, inflammation, and insulin resistance--a mini-review [J]. Gerontology, 2009, 55(4):379-386.[79] Laaksonen DE, Niskanen L, Nyyssonen K, et al. C-reactive protein and the development of the metabolic syndrome and diabetes in middle-aged men[J]. Diabetologia, 2004, 47(8):1403-1410.[80] Andreas Festa, Ralph D'Agostino Jr, Russell P Tracy, et al. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study [J]. Diabetes, 2002, 51(4):1131-1137.[81] Zhang Ke-zhong, Shen Xiao-hua, Wu Jun, et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response [J]. Cell, 2006, 124(3):587-599.[82] Toru Hosoi, Miyako Sasaki, Tsuyoshi Miyahara, et al. Endoplasmic reticulum stress induces leptin resistance [J]. Mol Pharmacol, 2008, 74(6):1610-1619.[83] Ann-Hwee Lee, Geraid C Chu, Neal N Iwakoshi, et al. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands [J]. EMBO J, 2005, 24(24):4368-4380.[84] Heather P Harding, Zeng Hui-qing, Zhang Yuhong, et al. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival[J]. Mol Cell, 2001, 7(6):1153-1163.[85] Christian Weyer, Clifton Bogardus, David M. Mott, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus [J]. J Clin Invest, 1999, 104(6):787-794.[86] Andreas Festa, Ken Williams, Ralph D'Agostino Jr, et al. The natural course of beta-cell function in nondiabetic and diabetic individuals: the insulin resistance atherosclerosis study[J]. Diabetes, 2006, 55(4):1114-1120.[87] Miriam Cnop, Josep Vidal, Rebecca L Hull, et al. Progressive loss of beta-cell function leads to worsening glucose tolerance in first-degree relatives of subjects with type 2 diabetes[J]. Diabetes Care, 2007, 30(3):677-682.[88] Michio Tamatani, Tomohiro Matsuyama, Atsushi Yamaguchi, et al. ORP150 protects against hypoxia/ischemia-induced neuronal death [J]. Nat Med, 2001, 7(3):317-323.[89] Martyn JA, Kaneki M, Yasuhara S. Obesity-induced insulin resistance and hyperglycemia: etiologic factors and molecular mechanisms [J]. Anesthesiology, 2008, 109(1):137-148.[90] Sun Wei-ping, Bi Yan, Liang Hua, et al. Inhibition of obesity-induced hepatic ER stress by early insulin therapy in obese diabetic rats[J]. Endocrine, 2011, 39(3):235-241.[91] Hideaki Kaneto, Yoshihisa Nakatani, Dan Kawamori, et al. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic beta-cell dysfunction and insulin resistance[J]. Int J Biochem Cell Biol, 2005, 37(8):1595-1608.[92] Helene L Kammoun, Herve Chabanon, Isabelle Hainault, et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice[J]. J Clin Invest, 2009, 119(5):1201-1215. |
[1] | Gill SE1,5#,Halene T1,6#,Rajarajan P2,Chandrasekaran S2,Kassim B1,Fullard JF1,5,. 3D Genome Mapping in Dopaminergic Neurons from Adult Human Midbrain[J]. 神经药理学报, 2018, 8(4): 31-32. |
[2] | WANG Hao1, ZHANG Fang-fang1, FU Hua-rong1, ZHOU Yan-meng1, LIU Xin1, HOU Xue-qin. Targeting PDE4 for Alzheimer’s Disease and Alcoholism: An implication in Alcohol-Related Dementia?[J]. 神经药理学报, 2018, 8(4): 39-41. |
[3] | 侯文书,张力. 丹参酮ⅡA对心血管系统的药理作用及剂型研究进展[J]. 神经药理学报, 2016, 6(4): 24-30. |
[4] | 高圆圆,郭春燕. 瞬时受体电位通道在代谢综合征中的研究进展[J]. 神经药理学报, 2016, 6(3): 38-43. |
[5] | 刘松. 醒脑静注射液对急性缺血性中风患者hs-CRP、IL-6 及TC 水平的影响[J]. 神经药理学报, 2015, 5(5): 15-19. |
[6] | 赵薇, 李方江, 王树. 脑缺血损伤的保护作用机制研究进展[J]. 神经药理学报, 2014, 4(6): 55-64. |
[7] | 李艳菲,王文. 局灶性脑缺血-再灌注大鼠Wnt3a蛋白表达的变化[J]. 神经药理学报, 2013, 3(5): 38-42. |
[8] | 杨谦谦,孙芳龄,艾厚喜,张丽,王文. 6-羟多巴胺诱导帕金森病大鼠模型行为学评价方法的探讨[J]. 神经药理学报, 2013, 3(1): 17-22. |
[9] | 赵楠,张有志,杨明,王伊文,赵毅民,宫泽辉,李云峰. 棉籽总黄酮抗抑郁活性及其对海马单胺水平的调节[J]. 神经药理学报, 2011, 1(4): 6-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||