张帅,艾静
出版日期:
2018-12-26
发布日期:
2019-06-14
通讯作者:
艾静,女,博士,教授,博士生导师;研究方向:神经药理学;Tel:+86-0451-86671354,E-mail:azhrbmu@126.com
作者简介:
张帅,男,硕士研究生;研究方向:神经药理学;E-mail:neurozhang_s@163.com
基金资助:
ZHANG Shuai,AI Jing
Online:
2018-12-26
Published:
2019-06-14
Contact:
艾静,女,博士,教授,博士生导师;研究方向:神经药理学;Tel:+86-0451-86671354,E-mail:azhrbmu@126.com
About author:
张帅,男,硕士研究生;研究方向:神经药理学;E-mail:neurozhang_s@163.com
Supported by:
摘要:
阿尔茨海默病(Alzheimer’s disease,AD)是全球最流行的痴呆症形式,是一种多因素参与的复杂的神经退行性疾病。研究表明谷氨酸功能异常参与了AD 的发生和发展,谷氨酸兴奋性毒性是AD 进展的重要原因之一。从认知功能正常发展至AD 过程中,谷氨酸功能呈现波动性变化,这为以谷氨酸功能通路为靶点的干预措施的研究增加了难度。该文的目的是对谷氨酸功能异常与AD 之间的关系进行综述,通过讨论谷氨酸的正常生理过程和功能,延伸到其病理过程,并针对谷氨酸通路中可能的药物靶点进行探究。
中图分类号:
张帅,艾静. 谷氨酸功能异常与阿尔茨海默病[J]. 神经药理学报, DOI: 10.3969/j.issn.2095-1396.2018.06.002.
ZHANG Shuai,AI Jing. Glutamate Dysfunction and Alzheimer’s Disease[J]. Acta Neuropharmacologica, DOI: 10.3969/j.issn.2095-1396.2018.06.002.
[1] Brian S Meldrum. Glutamate as a neurotransmitter in the brain: review of physiology and pathology[J]. J Nutr, 2000, 130 (4S Suppl): 1007S-15S.
[2] Andreas Reiner, Joshua Levitz. Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert[J]. Neuron, 2018, 98 (6): 1080-1098.
[3] Thomas Brown, P F Chapman, Edward Kairiss, et al. Long-term synaptic potentiation[J]. Science, 1988, 242 (4879): 724-728.
[4] A Burns, S Iliffe. Alzheimer's disease[J]. BMJ, 2009, 338: b158.
[5] World Health Organization. "Dementia Fact Sheet"[OL/J]. 2017.
[6] C Ballard, S Gauthier, A Corbett, et al. Alzheimer's disease[J]. Lancet, 2011, 377 (9770): 1019-31.
[7] Dustin T Proctor, Elizabeth J Coulson, Peter R Dodd. Post-synaptic scaffolding protein interactions with glutamate receptors in synaptic dysfunction and Alzheimer's disease[J]. Prog Neurobiol, 2011, 93 (4): 509-521.
[8] Zaira Esposito, Lorena Belli, Sofia Toniolo, et al. Amyloid β, glutamate, excitotoxicity in Alzheimer's disease: are we on the right track?[J]. CNS Neurosci Ther, 2013, 19 (8): 549-555.
[9] Ivana R Stojanovic, Milos Kostic, Srdjan Ljubisavljevic. The role of glutamate and its receptors in multiple sclerosis[J]. J Neural Transm (Vienna), 2014, 121 (8): 945-955.
[10] Nicole M Rowley, Karsten K Madsen, Arne Schousboe, et al. Glutamate and gaba synthesis, release, transport and metabolism as targets for seizure control[J]. Neurochem Int, 2012, 61 (4): 546-558.
[11] Anouk Marsman, Martijn P van den Heuvel, Dennis W Klomp, et al. Glutamate in schizophrenia: a focused review and meta-analysis of (1)H-MRS studies[J]. Schizophr Bull, 2013, 39 (1): 120-129.
[12] Silivio O Rizzoli, William J Betz. Synaptic vesicle pools[J]. Nat Rev Neurosci, 2005, 6 (1): 57-69.
[13] Josep Rizo. Mechanism of neurotransmitter release coming into focus[J]. Protein Sci, 2018, 27 (8): 1364-1391.
[14] Ayuko Sakane, Shinji Manabe, Hiroyoshi Ishizaki, et al. Rab3 gtpase-activating protein regulates synaptic transmission and plasticity through the inactivation of Rab3[J]. Proc Natl Acad Sci USA, 2006, 103 (26): 10029-10034.
[15] Claudio Acuna, Qing-chen Guo, Jacqueline Burre, et al. Microsecond dissection of neurotransmitter release: snare-complex assembly dictates speed and Ca(2)(+) sensitivity[J]. Neuron, 2014, 82 (5): 1088-1100.
[16] Zi-tao Zhang, Jin Fan, Yong-xin Ren, et al. The release of glutamate from cortical neurons regulated by bdnf via the Trkb/Src/Plc-gamma1 pathway[J]. J Cell Biochem, 2013, 114 (1): 144-151.
[17] Jasmina N Jovanovic, A J Czernik, Allen A Fienberg, et al. Synapsins as mediators of BDNF-enhanced neurotransmitter release[J]. Nat Neurosci, 2000, 3 (4): 323-329.
[18] William J Tyler, Lucas Pozzo-Miller. BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses[J]. J Neurosci, 2001, 21 (12): 4249-4258.
[19] Grzegorz Sulkowski, Beata Dabrowska-Bouta, Elzbieta Salinska, et al. Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in eae rat brain[J]. PLoS One, 2014, 9 (11): e113954.
[20] M Palmada, Josep J Centelles. Excitatory amino acid neurotransmission. pathways for metabolism, storage and reuptake of glutamate in brain[J]. Front Biosci, 1998, 3(4): d701-718.
[21] Kazuya Ikematsu, Ryouichi Tsuda, Toshikazu Kondo, et al. The expression of excitatory amino acid transporter 2 in traumatic brain injury[J]. Forensic Sci Int, 2002, 130 (2-3): 83-9.
[22] 李婧, 孙建栋, 苑玉和, 等. 谷氨酸能神经传递在抑郁症发病机制中作用的研究进展[J]. 神经药理学报, 2014, 4 (01): 20-24.
[23] J T Hackett, T Ueda. Glutamate Release[J]. Neurochem Res, 2015, 40 (12): 2443-2460.
[24] 凌鹏, 李月月, 钱恒, 等. 星形胶质细胞对兴奋性氨基酸神经递质的调控及与癫痫的关系[J]. 神经药理学报, 2015, 5 (02): 46-53.
[25] Kevin Nicholas Hascup, Erin Rutherford Hascup. Altered neurotransmission prior to cognitive decline in Abetapp/Ps1 mice, a model of Alzheimer's disease[J]. J Alzheimers Dis, 2015, 44 (3): 771-776.
[26] Shuang-qing Chen, Qing Cai, Yu-ying Shen, et al. Age-related changes in brain metabolites and cognitive function in App/Ps1 transgenic mice[J]. Behav Brain Res, 2012, 235 (1): 1-6.
[27] Kevin Nicholas Hascup, Erin Rutherford Hascup. Soluble amyloid-beta42 stimulates glutamate release through activation of the alpha7 nicotinic acetylcholine receptor[J]. J Alzheimers Dis, 2016, 53 (1): 337-347.
[28] D Kabogo, G Rauw, A Amritraj, et al. Ss-amyloid-related peptides potentiate K+-evoked glutamate release from adult rat hippocampal slices[J]. Neurobiol Aging, 2010, 31 (7): 1164-1172.
[29] Olga Voevodskaya, Pia C Sundgren, Olof Strandberg, et al. Myo-inositol changes precede amyloid pathology and relate to apoe genotype in Alzheimer disease[J]. Neurology, 2016, 86 (19): 1754-1761.
[30] Anneleen Schallier, Ilse Smolders, Debby Van Dam, et al. Region- and age-specific changes in glutamate transport in the abetapp23 mouse model for Alzheimer's disease[J]. J Alzheimers Dis, 2011, 24 (2): 287-300.
[31] Nicolas Fayed, Pedro J Modrego, Guillermo Rojas-Salinas, et al. Brain glutamate levels are decreased in Alzheimer's disease: a magnetic resonance spectroscopy study[J]. Am J Alzheimers Dis Other Demen, 2011, 26 (6): 450-456.
[32] Jordano Brito-Moreira, Andrea C Paula-Lima, T R Bomfim, et al. Abeta oligomers induce glutamate release from hippocampal neurons[J]. Curr Alzheimer Res, 2011, 8 (5): 552-562.
[33] Stanislaw Mitew, Matthew T K Kirkcaldie, Tracey C Dickson, et al. Altered synapses and gliotransmission in Alzheimer's disease and ad model mice[J]. Neurobiol Aging, 2013, 34 (10): 2341-2351.
[34] Lei Cao, Wei Jiang, Fang Wang, et al. The reduced serum free triiodothyronine and increased dorsal hippocampal Snap-25 and Munc18-1 had existed in middle-aged Cd-1 mice with mild spatial cognitive impairment[J]. Brain Res, 2013, 1540: 9-20.
[35] Lei Cao, Fang Wang, Qi-gang Yang, et al. Reduced thyroid hormones with increased hippocampal Snap-25 and Munc18-1 might involve cognitive impairment during aging[J]. Behav Brain Res, 2012, 229 (1): 131-137.
[36] Nicole C Berchtold, Marwan N Sabbagh, Thomas G Beach, et al. Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer's disease[J]. Neurobiol Aging, 2014, 35 (9): 1961-1972.
[37] Stephen W Scheff, Douglas A Price, Mubeen A Ansari, et al. Synaptic change in the posterior cingulate gyrus in the progression of Alzheimer's disease[J]. J Alzheimers Dis, 2015, 43 (3): 1073-1090.
[38] Neil W Kowall, M Flint Beal. Glutamate-, glutaminase-, and taurine-immunoreactive neurons develop neurofibrillary tangles in Alzheimer's disease[J]. Ann Neurol, 1991, 29 (2): 162-167.
[39] Nienke M Timmer, Megan K Herbert, Jurgen A H R Claassen, et al. Total glutamine synthetase levels in cerebrospinal fluid of Alzheimer's disease patients are unchanged[J]. Neurobiol Aging, 2015, 36 (3): 1271-1273.
[40] Chia-Yu Yeh, Alexei Verkhratsky, Slavica Terzieva, et al. Glutamine synthetase in astrocytes from entorhinal cortex of the triple transgenic animal model of Alzheimer's disease is not affected by pathological progression[J]. Biogerontology, 2013, 14 (6): 777-787.
[41] Gary L Wenk, Chris G Parsons, Wojciech Danysz. Potential role of n-methyl-d-aspartate receptors as executors of neurodegeneration resulting from diverse insults: focus on memantine[J]. Behav Pharmacol, 2006, 17 (5-6): 411-424.
[42] Dennis J Goebel, Michael S Poosch. NMDA Receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mrna levels of Nr1com, Nr2a, Nr2b, Nr2c, Nr2d and Nr3a[J]. Brain Res Mol Brain Res, 1999, 69 (2): 164-170.
[43] 张夏微, 张丹参. 雌激素和glu-Nmda受体通路与学习记忆相关性的研究进展[J]. 神经药理学报, 2011, 1 (06): 48-59.
[44] Mei Zheng, Dong-shen Fan. [Different distribution of NMDA receptor subunits in cortex contributes to selective vulnerability of motor neurons in amyotrophic lateral sclerosis][J]. Beijing Da Xue Xue Bao, 2011, 43 (2): 228-33.
[45] Sheng Peng, Yan Zhang, Jian-nan Zhang, et al. Glutamate receptors and signal transduction in learning and memory[J]. Mol Biol Rep, 2011, 38 (1): 453-460.
[46] Hui Wang, Rui-yun Peng. Basic roles of key molecules connected with NMDAR signaling pathway on regulating learning and memory and synaptic plasticity[J]. Mil Med Res, 2016, 3 (1): 26.
[47] R Malinow, R C Malenka. AMPA receptor trafficking and synaptic plasticity[J]. Annu Rev Neurosci, 2002, 25: 103-126.
[48] Zuner A Bortolotto, Vernon Clarke, Caroline M Delany, et al. Kainate receptors are involved in synaptic plasticity[J]. Nature, 1999, 402 (6759): 297-301.
[49] Agnes Simonyi, Todd R Schachtman, Gert R J Christoffersen. Metabotropic glutamate receptor subtype 5 antagonism in learning and memory[J]. Eur J Pharmacol, 2010, 639 (1-3): 17-25.
[50] Matthew E Klein, Pablo E Castillo, Bryen A Jordan. Coordination between translation and degradation regulates inducibility of Mglur-Ltd[J]. Cell Rep, 2015, 10(9):1459-1466.
[51] Yi-jin Yan, Can Peng, Matthew C Arvin, et al. Nicotinic cholinergic receptors in vta glutamate neurons modulate excitatory transmission[J]. Cell Rep, 2018, 23 (8): 2236-2244.
[52] Maria Papathanou, Meaghan Creed, Matthijs Constantjin Dorst, et al. Targeting vglut2 in mature dopamine neurons decreases mesoaccumbal glutamatergic transmission and identifies a role for glutamate co-release in synaptic plasticity by increasing baseline AMPA/NMDA ratio[J]. Front Neural Circuits, 2018, 12: 64.
[53] Ganesh M Shankar, Shao-min Li, Tapan H Mehta, et al. Amyloid-beta protein dimers isolated directly from alzheimer's brains impair synaptic plasticity and memory[J]. Nat Med, 2008, 14 (8): 837-842.
[54] Neng-Wei Hu, Imelda M Smith, Dominic M Walsh, et al. Soluble amyloid-beta peptides potently disrupt hippocampal synaptic plasticity in the absence of cerebrovascular dysfunction in vivo[J]. Brain, 2008, 131 (Pt 9): 2414-2424.
[55] Albert Hsia, Eliezer Masliah, Lisa McConlogue, et al. Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models[J]. Proc Natl Acad Sci USA, 1999, 96 (6): 3228-3233.
[56] John Larson, Gary Lynch, Dora Games, et al. Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged pdapp mice[J]. Brain Res, 1999, 840 (1-2): 23-35.
[57] James P Cleary, Dominic M Walsh, Jacki J Hofmeister, et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function[J]. Nat Neurosci, 2005, 8 (1): 79-84.
[58] S Lesné, M T Koh, L Kotilinek, et al. A specific amyloid-beta protein assembly in the brain impairs memory[J]. Nature, 2006, 440 (7082): 352-357.
[59] Dennis J Selkoe. Alzheimer's disease is a synaptic failure[J]. Science, 2002, 298 (5594): 789-791.
[60] David M Armstrong, Milos D Ikonomovic, R Sheffield, et al. AMPA-selective glutamate receptor subtype immunoreactivity in the entorhinal cortex of non-demented elderly and patients with Alzheimer's disease[J]. Brain Res, 1994, 639 (2): 207-216.
[61] Veronika Thorns, Margaret Mallory, Lawrence Arthur Hansen, et al. Alterations in glutamate receptor 2/3 subunits and amyloid precursor protein expression during the course of Alzheimer's disease and lewy body variant[J]. Acta Neuropathol, 1997, 94 (6): 539-548.
[62] Sic L Chan, W Sue Griffin, Mark P Mattson. Evidence for caspase-mediated cleavage of AMPA receptor subunits in neuronal apoptosis and Alzheimer's disease[J]. J. Neurosci Res, 1999, 57 (3): 315-323.
[63] Sara Johansson, Ann-Cathrin Radesäter, Richard Frank Cowburn, et al. Modelling of Amyloid beta-peptide induced lesions using roller-drum incubation of hippocampal slice cultures from neonatal rats[J]. Exp Brain Res, 2006, 168 (1-2): 11-24.
[64] Lars M Ittner, Yazi D Ke, Fabien Delerue, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models[J]. Cell, 2010, 142 (3): 387-397.
[65] E M Snyder, Y Nong, C G Almeida, et al. Regulation of NMDA receptor trafficking by amyloid-beta[J]. Nat Neurosci, 2005, 8 (8): 1051-1058.
[66] Shi xiao-dong, Sun Kai, Hu Rui, et al. Blocking the interaction between ephb2 and addls by a small peptide rescues impaired synaptic plasticity and memory deficits in a mouse model of Alzheimer's disease[J]. J Neurosci, 2016, 36 (47): 11959-11973.
[67] V Szegedi, G Juhász, D Budai, et al. Divergent effects of abeta1-42 on ionotropic glutamate receptor-mediated responses in ca1 neurons in vivo[J]. Brain Res, 2005, 1062 (1-2): 120-126.
[68] Sylvian Lesné, Carine Ali, Cecilia Gabriel, et al. NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production[J]. J Neurosci, 2005, 25 (41): 9367-9377.
[69] Shao-min Li, Soyon Hong, Nina E Shepardson, et al. Soluble oligomers of amyloid beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake[J]. Neuron, 2009, 62 (6): 788-801.
[70] Zheng Li, Jihoon Jo, Jie-Min Jia, et al. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization[J]. Cell, 2010, 141 (5): 859-871.
[71] Jihoon Jo, Daniel Whitcomb, Kimberly Olsen, et al. Aβ(1-42) inhibition of Ltp is mediated by a signaling pathway involving caspase-3, Akt1 and Gsk-3β[J]. Nat Neurosci, 2011, 14 (5): 545-547.
[72] Alfredo J Miñano-Molina, Judit España, Elsa Martín, et al. Soluble oligomers of amyloid-β peptide disrupt membrane trafficking of Α-Amino-3-Hydroxy-5-Methylisoxazole-4-Propionic acid receptor contributing to early synapse dysfunction[J]. J Biol Chem, 2011, 286 (31): 27311-27321.
[73] Laura T Haas, Santiago Viveros Salazar, Mikhail Kostylev, et al. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease[J]. Brain, 2016, 139 (Pt 2): 526-546.
[74] Ji Won Um, Adam C Kaufman, Mikhail Kostylev, et al. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer Aβ oligomer bound to cellular prion protein[J]. Neuron, 2013, 79 (5): 887-902.
[75] Yong-fang Zhang, Pradeep Kurup, Jian Xu, et al. Reduced levels of the tyrosine phosphatase step block β Amyloid-mediated glua1/glua2 receptor internalization[J]. J Neurochem, 2011, 119 (3): 664-672.
[76] Yazi D Ke, Alexandra K Suchowerska, Julia van der Hoven, et al. Lessons from tau-deficient mice[J]. Int J Alzheimers Dis, 2012, 12: 873270.
[77] Lars Matthias Ittner, Jurgen Gotz. Amyloid-beta and tau--a toxic pas de deux in Alzheimer's disease[J]. Nat Rev Neurosci, 2011, 12 (2): 65-72.
[78] Lars M Ittner, Yazi D Ke, Fabien Delerue, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer's disease mouse models[J]. Cell, 2010, 142 (3): 387-397.
[79] Justin M Nussbaum, Stephan Schilling, Holger Cynis, et al. Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-beta[J]. Nature, 2012, 485 (7400): 651-655.
[80] Erik D Roberson, Kimberly Scearce-Levie, Jorge J Palop, et al. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer's disease mouse model[J]. Science, 2007, 316 (5825): 750-754.
[81] Elizabeth E Spangenberg, Rafael Jae Chul Lee, Allison Najafi, et al. Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-beta pathology[J]. Brain, 2016, 139 (Pt 4): 1265-1281.
[82] Rosa C Paolicelli, Ali Jawaid, Christopher M Henstridge, et al. Tdp-43 depletion in microglia promotes amyloid clearance but also induces synapse loss[J]. Neuron, 2017, 95 (2): 297-308.e6.
[83] Peng Yuan, Carlo Condello, C Dirk Keene, et al. Trem2 Haplodeficiency in Mice and Humans Impairs the Microglia Barrier Function Leading to Decreased Amyloid Compaction and Severe Axonal Dystrophy[J]. Neuron, 2016, 90 (4): 724-739.
[84] Zhi-you Cai, Muhammad Delwar Hussain, Liang-jun Yan. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease[J]. Int J Neurosci, 2014, 124 (5): 307-321.
[85] Deborah Doens, Patricia L Fernandez. Microglia receptors and their implications in the response to amyloid beta for Alzheimer's disease pathogenesis[J]. J Neuroinflammation, 2014, 11: 48.
[86] Y Hayashi, H Nakanishi. [Synaptic plasticity and synaptic reorganization regulated by microglia][J]. Nihon Shinkei Seishin Yakurigaku Zasshi, 2013, 33 (5-6): 211-216.
[87] Alfredo Ramos-Miguel, Andrea A Jones, Ken Sawada, et al. Frontotemporal dysregulation of the snare protein interactome is associated with faster cognitive decline in old age[J]. Neurobiol Dis, 2018, 114: 31-44.
[88] Manu Sharma, Jacqueline Burré, Thomas C Südhof. Proteasome inhibition alleviates snare-dependent neurodegeneration[J]. Sci Transl Med, 2012, 4 (147): 147ra13.
[89] Shun Shimohama, Takeshi Kihara. Nicotinic receptor-mediated protection against beta-amyloid neurotoxicity[J]. Biol Psychiatry, 2001, 49 (3): 233-239.
[90] 王晓玲, 邓于新, 官志忠, 等. Α7神经型尼古丁受体对突触功能和钙信号通路的影响及在阿尔茨海默氏病中的神经保护作用机制研究[J]. 神经药理学报, 2018, 8 (02): 35-36.
[91] Alessia Salamone, Elisa Mura, Stefania Zappettini, et al. Inhibitory effects of beta-amyloid on the nicotinic receptors which stimulate glutamate release in rat hippocampus: the glial contribution[J]. Eur J Pharmacol, 2014, 723: 314-321.
[92] Elisa Mura, Stefania Zappettini, Stefania Preda, et al. Dual effect of beta-amyloid on alpha7 and alpha4beta2 nicotinic receptors controlling the release of glutamate, aspartate and gaba in rat hippocampus[J]. PLoS One, 2012, 7 (1): e29661.
[93] Ellen S Mitchell, John F Neumaier. 5-Ht6 receptors: a novel target for cognitive enhancement[J]. Pharmacol Ther, 2005, 108 (3): 320-333.
[94] J B Schulz, R T Matthews, D R Henshaw, et al. Neuroprotective strategies for treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseases[J]. Neuroscience, 1996, 71 (4): 1043-1048.
[95] David A Karanian, Andrea S Baude, Queenie B Brown, et al. 3-nitropropionic acid toxicity in hippocampus: protection through n-methyl-d-aspartate receptor antagonism[J]. Hippocampus, 2006, 16 (10): 834-842.
[96] Hong-xin Dong, Carla M Yuede, Carolyn Coughlan, et al. Effects of memantine on neuronal structure and conditioned fear in the tg2576 mouse model of Alzheimer's disease[J]. Neuropsychopharmacology, 2008, 33 (13): 3226-3236.
[97] Matthew Boyko, Shaun Gruenbaum, Benjamin F Gruenbaum, et al. Brain to blood glutamate scavenging as a novel therapeutic modality: a review[J]. J Neural Transm (Vienna), 2014, 121 (8): 971-979.
[98] Gerhard Rammes, Franziska Seeser, Korinna Mattusch, et al. The nmda receptor antagonist radiprodil reverses the synaptotoxic effects of different amyloid-beta (aβ) species on long-term potentiation (Ltp)[J]. Neuropharmacology, 2018, DOI: 10.1016/j.neuropharm.2018.07.021.
[99] Jian Xu, Manavi Chatterjee, Tyler D Baguley, et al. Inhibitor of the tyrosine phosphatase step reverses cognitive deficits in a mouse model of Alzheimer's disease[J]. PLoS Biol, 2014, 12 (8): e1001923.
[100] Moustapha Cissé, Brian Halabisky, Julie A Harris, et al. Reversing ephb2 depletion rescues cognitive functions in Alzheimer model[J]. Nature, 2011, 469 (7328): 47-52.
[101] Ana C Pereira, Jason Gray, J F Kogan, et al. Age and Alzheimer's disease gene expression profiles reversed by the glutamate modulator riluzole[J]. Mol Psychiatry, 2017, 22 (2): 296-305.
[102] S H Kim, J W Steele, S W Lee, et al. Proneurogenic group ii mglur antagonist improves learning and reduces anxiety in Alzheimer Aβ oligomer mouse[J]. Mol Psychiatry, 2014, 19 (11): 1235-1242.
[103] Hanuma Kumar Karnati, Manas Panigrahi, Ravi Kumar Gutti, et al. Mirnas: key players in neurodegenerative disorders and epilepsy[J]. J Alzheimers Dis, 2015, 48 (3): 563-580.
[104] Lin Tan, Jin-tai Yu, Nan Hu, et al. Non-coding rnas in Alzheimer's disease[J]. Mol Neurobiol, 2013, 47 (1): 382-393.
[105] Mark Lovell, Melissa Bradley-whitman, Shuling X Fister. 4-Hydroxyhexenal (Hhe) impairs glutamate transport in astrocyte cultures[J]. J Alzheimers Dis, 2012, 32 (1): 139-146.
[106] Eiichi Hinoi, Takeshi Takarada, Yuiko Tsuchihashi, et al. Glutamate transporters as drug targets[J]. Curr Drug Targets CNS Neurol Disord, 2005, 4 (2): 211-220.
[107] Kou Takahashi, Qiong-man Kong, Yu-chen Lin, et al. Restored glial glutamate transporter eaat2 function as a potential therapeutic approach for Alzheimer's disease[J]. J Exp Med, 2015, 212 (3): 319-332.
[108] Margaret McCartney. The "breakthrough" drug that's not been shown to help in Alzheimer's disease[J]. BMJ, 2015, 351: h4064.
[109] Jeffrey L Cummings, Travis Morstorf, Kate Zhong. Alzheimer's disease drug-development pipeline: few candidates, frequent failures[J]. Alzheimers Res Ther, 2014, 6 (4): 37.
[110] David Baglietto-Vargas, Gilberto Aleph Prieto, Agenor Limon, et al. Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease[J]. Aging Cell, 2018, 17(suppl 1): e12791.
[111] Eisai Co., Ltd. Eisai and biogen announce positive topline results of the final analysis for ban2401 at 18 months[OL]. 2018, https://www.eisai.com/news/index.html.
[112] Eisai Co., Ltd, Biogen Inc. Adaptive phase ii study of ban2401 in early Alzheimer’s disease continues toward 18-month endpoint[OL]. 2018, https://www.eisai.com/news/index.html.
[113] Wataru Kakegawa, Akira Katoh, Sakae Narumi, et al. Optogenetic control of synaptic AMPA receptor endocytosis reveals roles of ltd in motor learning[J]. Neuron, 2018, 99 (5): 985-98.e6.
[114] Anton Maximov, Thomas C Südhof. Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release[J]. Neuron, 2005, 48 (4): 547-554.
[115] Z Dai, X Tang, J Chen, et al. Rab3a inhibition of Ca -dependent dopamine release from pc12 cells involves interaction with synaptotagmin 1[J]. J Cell Biochem, 2017, 118 (11): 3696-705.
[116] Claudia Verderio, Davide Pozzi, Elena Pravettoni, et al. Snap-25 modulation of calcium dynamics underlies differences in gabaergic and glutamatergic responsiveness to depolarization[J]. Neuron, 2004, 41 (4): 599-610.
[117] Niti Puri, Paul A Roche. Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different snare isoforms[J]. Proc Natl Acad Sci USA, 2008, 105(7): 2580-2585.
|
[1] | 杨琳,艾静. 脑源雌激素在阿尔茨海默病中的作用研究进展[J]. 神经药理学报, 2019, 9(5): 50-64. |
[2] | SHEN li-xia1,LIU Liang-liang1,ZHANG Ming1,LIU Yang1,ZHANG Dan-shen 2*. Research of Quercetin’s Estrogen-Like Action on Central Nervous System and Its Mechanisms[J]. 神经药理学报, 2018, 8(4): 23-25. |
[3] | 黄蕊,杨翠翠,张兰. 二苯乙烯苷对APP/PS1 双转基因小鼠学习记忆及突触可塑性的影响[J]. 神经药理学报, 2018, 8(2): 31-31. |
[4] | 雷曦,王健辉,程肖蕊,张小锐,刘港,周文霞,张永祥. 基于快速老化模型小鼠SAMP8 的CA-30 抗阿尔茨海默病的作用研究[J]. 神经药理学报, 2018, 8(2): 50-50. |
[5] | 王健辉,程肖蕊,张小锐,刘港,周文霞,张永祥. 药物组合吲哚美辛与阿托伐他汀对阿尔茨海默病的治疗作用研究[J]. 神经药理学报, 2018, 8(2): 52-52. |
[6] | 王静,程肖蕊,周文霞,张永祥. 快速老化模型小鼠海马囊泡谷氨酸转运体表达与兴奋性毒性关系的研究[J]. 神经药理学报, 2018, 8(2): 53-53. |
[7] | 张林,蒋宁,周文霞,张永祥. 疾病特异性诱导性多功能干细胞AD 模型建立[J]. 神经药理学报, 2018, 8(2): 54-54. |
[8] | 郭鹏,张巍. 阿尔茨海默病患者睡眠障碍及其与认知障碍关系的研究[J]. 神经药理学报, 2018, 8(2): 61-61. |
[9] | 连腾宏,李少武,余秋瑾,等. 阿尔茨海默病伴发嗅觉障碍的临床特点及静息态功能核磁共振成像的研究[J]. 神经药理学报, 2018, 8(2): 62-62. |
[10] | 金朝,郭鹏,左丽君,等. 阿尔茨海默病患者视网膜纤维层厚度与临床症状关系[J]. 神经药理学报, 2018, 8(2): 69-69. |
[11] | 常福厚,白图雅,吕晓丽,胡玉霞,李君,林楠,周树宏. 中蒙药对老年性痴呆治疗的研究进展[J]. 神经药理学报, 2018, 8(2): 73-73. |
[12] | 王同兴,韩 露,程肖蕊,周文霞,张永祥. 基于神经内分泌免疫调节分子网络的防治阿尔茨海默病药物新靶点的探索性研究[J]. 神经药理学报, 2018, 8(2): 76-76. |
[13] | 林志彬. 灵芝的抗衰老与抗阿尔茨海默病的药理研究进展[J]. 神经药理学报, 2018, 8(1): 9-15. |
[14] | 刘诺,王真真,陈乃宏. 肠道菌群在阿尔茨海默病发病中的作用[J]. 神经药理学报, 2017, 7(5): 28-. |
[15] | 侯文书,张力. 中药有效成分治疗阿尔茨海默病的作用靶点研究进展[J]. 神经药理学报, 2017, 7(5): 59-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||