神经药理学报 ›› 2018, Vol. 8 ›› Issue (1): 54-64.DOI: 10.3969/j.issn.2095-1396.2018.01.007
• 综述 • 上一篇
昝桂影 ,孙翔, 李庆林, 刘景根
出版日期:
2018-02-26
发布日期:
2018-06-04
通讯作者:
刘景根,男,研究员,博士;研究方向:神经药理学;Tel:+86-021-50807588,E-mail:jgliu@mail.shcnc.ac.cn
作者简介:
昝桂影,女,博士;研究方向:神经药理学;E-mail:zanguiying@126.com
基金资助:
科技部基金项目(No. 2015CB553500),国家自然科学基金项目(No. 81671322、81401107)
ZAN Gui-ying,SUN Xiang,LI Qing-lin,LIU Jing-gen
Online:
2018-02-26
Published:
2018-06-04
Contact:
刘景根,男,研究员,博士;研究方向:神经药理学;Tel:+86-021-50807588,E-mail:jgliu@mail.shcnc.ac.cn
About author:
昝桂影,女,博士;研究方向:神经药理学;E-mail:zanguiying@126.com
Supported by:
科技部基金项目(No. 2015CB553500),国家自然科学基金项目(No. 81671322、81401107)
摘要: 抑郁症是一种严重的精神障碍疾病,发病率高,社会危害大。目前单胺重摄取抑制剂是临床治疗抑郁症的一线药物,但是普遍存在起效延迟,副作用多,并且治愈率低的问题。以阿片受体为靶点的抗抑郁药物研发显示出非常有希望的前景,临床研究发现,κ阿片受体拮抗剂丁丙诺啡在难治型抑郁症中发挥良好的治疗效果。该文将对κ阿片受体在抑郁发生发展过程中的作用及其机制进行综述,总结强啡肽 /κ阿片受体在不同脑区中的作用。并介绍强啡肽 /κ阿片受体系统和促肾上腺皮质激素释放因子(corticotrophin releasing factor,CRF)系统是如何发挥相互作用调控行为,就参与介导抑郁样行为的κ阿片受体上游和下游分子的研究现状予以介绍,以期为将来的研究提供参考。
中图分类号:
昝桂影,孙翔, 李庆林, 刘景根 . κ阿片受体在抑郁中的作用及机制研究进展[J]. 神经药理学报, 2018, 8(1): 54-64.
ZAN Gui-ying,SUN Xiang,LI Qing-lin,LIU Jing-gen. Research Progress of the Role and Underlying Mechanism of Dynorphin/κ Opioid Receptor in the Development of Depression[J]. Acta Neuropharmacologica, 2018, 8(1): 54-64.
[1] Ronald C Kessler, Evelyn J Bromet. The epidemiology of depression across cultures [J]. Annu Rev Publi Health, 2013, 34: 119-138.[2] 何海然, 薛占霞. 抑郁症相关发病机制的研究进展 [J]. 神经药理学报, 2016, 6(2): 20-25.[3] 我国精神疾病患者人数超1亿多数是抑郁症患者[Z], 人民日报(2016-10-14),北京。[4] George T Taylor, Francesca Manzella. Kappa opioids, Salvinorin A and major depressive disorder [J]. Curr Neuropharmacol, 2016, 14(2): 165-176.[5] William A Carlezon, Cecile Beguin, Allison T Knoll, et al. Kappa-opioid ligands in the study and treatment of mood disorders [J]. Pharmacol Ther, 2009, 123(3): 334-343.[6] Allison T Knoll, William A Carlezon Jr. Dynorphin, stress, and depression [J]. Brain Res, 2010, 1314: 56-73.[7] Bruchas M R, Land B B, Chavkin C. The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors [J]. Brain Res, 2010, 1314: 44-55.[8]谢小虎, 周文华, 杨国栋. κ阿片受体研究新进展[J]. 中国药物依赖性杂志, 2000, (03): 166-169.[9] McLaughlin J P, Marton-Popovici M, Chavkin C. Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses [J]. J Neurosci, 2003, 23(13): 5674-5683.[10] Carr GV, Bangasser DA, Bethea T, et al. Antidepressant-like effects of kappa-opioid receptor antagonists in Wistar Kyoto rats [J]. Neuropsychopharmacology, 2010, 35(3): 752-763.[11] Wang Yu-jun, Khampaseuth Rasakham, Huang Peng, et al. Sex difference in κ-opioid receptor (KOPR)-mediated behaviors, brain region KOPR level and KOPR-mediated guanosine 5'-O-(3-[35S]thiotriphosphate) binding in the guinea pig [J]. J Pharmacol Exp Ther, 2011, 339(2): 438-450.[12] 邹冈, 张昌绍. 脑室内或脑组织内微量注射吗啡的镇痛效应[J].生理学报, 1962, 25:119—128[13] 李凌江,马宁. 应激和抑郁[J]. 临床精神医学杂志, 2014, 01:69-70. [14] Benjamin B Land, Michael R Bruchas, Julia C Lemos, et al. The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system [J]. J Neurosci 2008, 28(2): 407-414.[15] Michael R Bruchas, Benjamin B Land, Megumi Aita, et al. Stress-induced p38 mitogen-activated protein kinase activation mediates kappa-opioid-dependent dysphoria [J]. J Neurosci, 2007, 27(43): 11614-11623.[16]Beverly A S Reyes, Guy Drolet, E J Van Bockstaele. Dynorphin and stress-related peptides in rat locus coeruleus: contribution of amygdalar efferents [J]. J Comp Neurol, 2008, 508(4): 663-675.[17] Michael R Bruchas, Benjamin B Land, Julia C Lemos, et al. CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior [J]. PLoS One, 2009, 4(12): e8528.[18] Katia Gysling. Relevance of both type-1 and type-2 corticotropin releasing factor receptors in stress-induced relapse to cocaine seeking behavior [J]. Biochem Pharmacol, 2012, 83(1): 1-5.[19] Minh P Lam, Christina Gianoulakis. Effects of corticotropin-releasing hormone receptor antagonists on the ethanol-induced increase of dynorphin A1-8 release in the rat central amygdala [J]. Alcohol, 2011, 45(7): 621-630.[20]龚雪. γ-氨基丁酸对小鼠焦虑样行为及认知功能的影响[D].上海: 复旦大学, 2013.[21]Kang-Park M, Kieffer B L, Roberts A J, et al. Interaction of CRF and kappa opioid systems on GABAergic neurotransmission in the mouse central amygdala [J]. J Pharmacol Exp Ther, 2015, 355(2): 206-211. [22] William A Carlezon, Cecile Béguin, Jennifer A DiNieri , et al. Depressive-like effects of the kappa-opioid receptor agonist salvinorin A on behavior and neurochemistry in rats [J]. J Pharmacol Exp Ther, 2006, 316(1): 440-447.[23] Stephanie R Ebner, Mitchell F Roitman, David N Potter, et al. Depressive-like effects of the kappa opioid receptor agonist salvinorin A are associated with decreased phasic dopamine release in the nucleus accumbens [J]. Psychopharmacology (Berl) 2010, 210(2): 241-252.[24] Shayla E Russell, Anna B Rachlin, Karen L Smith, et al. Sex differences in sensitivity to the depressive-like effects of the kappa opioid receptor agonist U-50488 in rats [J]. Biol Psychiatry, 2014, 76(3): 213-222.[25] Mitch Harden, Staci E Smith, Jennifer A Niehoff, et al. Antidepressive effects of the kappa-opioid receptor agonist salvinorin A in a rat model of anhedonia [J]. Behav Pharmacol, 2012, 23(7): 710-715.[26] Wang Qian, Long Yu, Hang Ai, et al. The anxiolytic- and antidepressant-like effects of ATPM-ET, a novel κ agonist and μ partial agonist, in mice [J]. Psychopharmacology (Berl), 2016, 233(12): 2411-2418.[27] 龙玉. ATPM-ET的抗焦虑、抗抑郁作用评价及机制研究[D]. 大连: 大连医科大学, 2016.[28] Jay P McLaughlin, Li Shuang, Joseph Valdez, et al. Social defeat stress-induced behavioral responses are mediated by the endogenous kappa opioid system [J]. Neuropsychopharmacology, 2006, 31(6): 1241-1248.[29] Matthew D Wiley, Laura B Poveromo, John Antapasis, et al. Kappa-opioid system regulates the long-lasting behavioral adaptations induced by early-life exposure to methylphenidate [J]. Neuropsychopharmacology, 2009, 34(5): 1339-1350.[30] Edgardo Falcon, Kaitlyn Maier, Shivon A Robinson, et al. Effects of buprenorphine on behavioral tests for antidepressant and anxiolytic drugs in mice [J]. Psychopharmacology (Berl), 2015, 232(5).[31] Charlotte K Callaghan, Jennifer Rouine, Reginald L Dean, et al. Antidepressant-like effects of 3-carboxamido seco-nalmefene (3CS-nalmefene), a novel opioid receptor modulator, in a rat IFN-α-induced depression model [J]. Brain Behav Immun, 2017, 67:152-162.[32] Abdulrahman Almatroudi, Mehrnoosh Ostovar, Christopher P Bailey, et al. Antidepressant-like effects of BU10119, a novel buprenorphine analogue with mixed kappa/mu opioid receptor antagonist properties, in mice[J]. Br J Pharmacol, 2017, DOI: 10.1111/bph.14060.[33] Daniela Braida, Valeria Capurro, Alessia Zani, et al. Potential anxiolytic- and antidepressant-like effects of salvinorin A, the main active ingredient of Salvia divinorum, in rodents [J]. Br J Pharmacol, 2009, 157(5): 844-853.[34] Cindee F Robles, Marissa Z McMackin, Katharine L Campi, et al. Effects of kappa opioid receptors on conditioned place aversion and social interaction in males and females [J]. Behav Brain Res, 2014, 262: 84-93.[35] Elena Chartoff, Allison Sawyer, Anna Rachlin, et al. Blockade of kappa opioid receptors attenuates the development of depressive-like behaviors induced by cocaine withdrawal in rats [J]. Neuropharmacology, 2012, 62(1): 167-176.[36] Lalanne L, Ayranci G, Filliol D, et al. Kappa opioid receptor antagonism and chronic antidepressant treatment have beneficial activities on social interactions and grooming deficits during heroin abstinence [J]. Addict Biol, 2017, 22 (4): 1010-1021.[37] Reindl J D, Rowan K, Carey A N, et al. Antidepressant-like effects of the novel kappa opioid antagonist MCL-144B in the forced-swim test [J]. Pharmacology, 2008, 81(3): 229-235.[38] 李婧, 孙建栋, 苑玉和, 等.谷氨酸能神经传递在抑郁症发病机制中作用的研究进展[J]. 神经药理学报, 2014, 3(1): 20-24。[39] Danielle M Gerhard, Eric S Wohleb, Ronald S Duman. Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity [J]. Drug Discov Today, 2016, 21(3):454-464.[40] Ronald S Duman. Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections [J]. Dialogues Clin Neurosci, 2014, 16(1):11-27.[41] Gregory O Hjelmstad, Howard L Fields. Kappa opioid receptor activation in the nucleus accumbens inhibits glutamate and GABA release through different mechanisms [J]. J Neurophysiol, 2003, 89(5): 2389-2395.[42] Hugo A Tejeda, Ashley N Hanks, Liam Scott, et al. Prefrontal cortical kappa opioid receptors attenuate responses to amygdala inputs [J]. Neuropsychopharmacology, 2015, 40(13): 2856-2864.[43] Nicole A Crowley, Daniel W Bloodgood, J Andrew Hardaway, et al. Dynorphin controls the gain of an amygdalar anxiety circuit [J]. Cell Rep, 2016, 14(12):2774-2783.[44] Guo Ming-yan, Cao De-xiong, Zhu Si-yu et al. Chronic exposure to morphine decreases the expression of EAAT3 via opioid receptors in hippocampal neurons [J]. Brain Res, 2015, 1628 (Pt A): 40-49.[45] 薛占霞, 彭亮. 情感性精神障碍疾病治疗药物的研究现状[J]. 神经药理学报, 2011, 1(1): 55-64[46] Tao Rui, Sidney Auerbach. mu-Opioids disinhibit and kappa-opioids inhibit serotonin efflux in the dorsal raphe nucleus [J]. Brain Res, 2005, 1049(1): 70-79.[47] Elena Zakharova, Stephanie L Collins, Maria Aberg, et al. Depletion of serotonin decreases the effects of the kappa-opioid receptor agonist U-69593 on cocaine-stimulated activity [J]. Eur J Pharmacol, 2008, 586(1-3): 123-129.[48] Santhanalakshmi Sundaramurthy, Balasubramaniam Annamalai, Devadoss J Samuvel, et al. Modulation of serotonin transporter function by kappa-opioid receptor ligands [J]. Neuropharmacology, 2017, 113 (Pt A): 281-292.[49] Abigail G Schindler, Daniel I Messinger, Jeffrey S Smith, et al. Stress produces aversion and potentiates cocaine reward by releasing endogenous dynorphins in the ventral striatum to locally stimulate serotonin reuptake [J]. J Neurosci, 2012, 32(49): 17582-17596.[50] Fuentealba J A, Gysling K, Andrés M E. Repeated treatment with the κ-opioid agonist U-69593 increases K+-stimulated dopamine release in the rat medial prefrontal cortex [J]. Synapse, 2010, 64(12): 898-904.[51] Nuannoi Chudapongse, Seong-Youl Kim, Robert Kramer, et al. Nonspecific effects of the selective kappa-opioid receptor agonist U-50,488H on dopamine uptake and release in PC12 cells [J]. J Pharmacol Sci, 2003, 93(3):372-375.[52] Bronwyn Kivell, Zeljko Uzelac, Santhanalakshmi Sundaramurthy. Salvinorin A regulates dopamine transporter function via a kappa opioid receptor and ERK1/2-dependent mechanism [J]. Neuropharmacology, 2014, 86: 228-240.[53] Antony D Abraham, Harrison M Fontaine, Allisa J Song. Kappa opioid receptor activation in dopamine neurons disrupts behavioral inhibition [J]. Neuropsychopharmacology, 2017, 43:362-372.[54] Ream Al-Hasani, Jordan G McCall, Audra M Foshage, et al. Locus coeruleus kappa-opioid receptors modulate reinstatement of cocaine place preference through a noradrenergic mechanism [J]. Neuropsychopharmacology, 2013, 38(12): 2484-2497.[55] 夏军, 陈军, 周义成, 等. 抑郁症患者海马及杏仁核容积异常的MRI研究[J]. 中华放射学杂志, 2005, (02): 28-31. [56] Philip Gorwood. Neurobiological mechanisms of anhedonia [J]. Dialogues Clin Neurosci, 2008, 10(3): 291-299.[57] Garret D Stuber, Dennis R Sparta, Alice M Stamatakis, et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking [J]. Nature, 2011, 475(7356): 377-380.[58] Allison T Knoll, John W Muschamp, Stephanie E Sillivan, et al. Kappa opioid receptor signaling in the basolateral amygdala regulates conditioned fear and anxiety in rats [J]. Biol Psychiatry, 2011, 70(5): 425-433.[59] Stephanie K Nygard, Nicholas J Hourguettes, Gabe G Sobczak, et al. Stress-induced reinstatement of nicotine preference requires dynorphin/kappa opioid activity in the basolateral amygdala [J]. J Neurosci, 2016, 36(38): 9937-9948.[60] 王一赫, 江虹, 李颖, 等. 不同时程温和应激对大鼠海马神经元、T淋巴细胞亚群的动态影响 [J]. 中国临床心理学杂志, 2013, 21(05): 731-734.[61] 成翔, 张蕾, 姚莉红, 等. 慢性应激抑郁状态对大鼠海马神经元再生的影响 [J]. 神经解剖学杂志, 2013, 29(04): 431-434. [62] Carrie T Drake, Charles Chavkin, Teresa A Milner. Opioid systems in the dentate gyrus [J]. Prog Brain Res, 2007, 163: 245-263.[63] John J Wagner, Gregory W Terman, Charles Chavkin. Endogenous dynorphins inhibit excitatory neurotransmission and block LTP induction in the hippocampus [J]. Nature, 1993, 363(6428): 451-454.[64] Yukihiko Shirayama, Hisahito Ishida, Masaaki Iwata, et al. Stress increases dynorphin immunoreactivity in limbic brain regions and dynorphin antagonism produces antidepressant-like effects [J]. J Neurochem, 2004, 90(5): 1258-1268.[65] Stephanie Daumas, Alexandre Betourne, Helene Halley, et al. Transient activation of the CA3 Kappa opioid system in the dorsal hippocampus modulates complex memory processing in mice [J]. Neurobiol Learn Mem, 2007, 88(1): 94-103. [66] Carey A N, Lyons A M, Shay C F, et al. Endogenous kappa opioid activation mediates stress-induced deficits in learning and memory [J]. J Neurosci, 2009, 29(13): 4293-4300.[67] Sante A B, Manoel J Nobre, Marcus L Brandão. Place aversion induced by blockade of mu or activation of kappa opioid receptors in the dorsal periaqueductal gray matter [J]. Behav Pharmacol, 2000, 11(7-8): 583-589.[68] George F Koob. Neurobiological substrates for the dark side of compulsivity in addiction [J]. Neuropharmacology, 2009, 56(Suppl 1): 18-31.[69] 俞纲. 中脑腹侧背盖区κ-阿片受体系统对吗啡依赖的调控作用[D].北京: 中国人民解放军军事医学科学院, 2009.[70] Elizabeth N Holly, Klaus A Miczek. Ventral tegmental area dopamine revisited: effects of acute and repeated stress [J]. Psychopharmacology (Berl), 2016, 233(2): 163-186.[71] William A Carlezon Jr, Mark J Thomas. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis [J]. Neuropharmacology, 2009, 56 (Suppl 1): 122-132.[72] Zan Gui-ying, Wang Qian, Wang Yu-jun, et al. Antagonism of κ opioid receptor in the nucleus accumbens prevents the depressive-like behaviors following prolonged morphine abstinence [J]. Behav Brain Res, 2015, 291: 334-341.[73] William A Carlezon Jr, Johannes Thome, Valerie G Olson, et al. Regulation of cocaine reward by CREB [J]. Science, 1998, 282(5397): 2272-2275.[74] Andrea M Pliakas, Richard R Carlson, Rachael L Neve, et al. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens [J]. J Neurosci, 2001, 21(18): 7397-7403.[75] John W Muschamp, Ashlee Van't Veer, Aram Parsegian, et al. Activation of CREB in the nucleus accumbens shell produces anhedonia and resistance to extinction of fear in rats [J]. J Neurosci, 2011, 31(8): 3095-3103.[76] Elena H Chartoff, Maria Papadopoulou, Matt L MacDonald, et al. Desipramine reduces stress-activated dynorphin expression and CREB phosphorylation in NAc tissue [J]. Mol Pharmacol, 2009, 75(3): 704-712.[77] Michael J McCarthy, Anne-Marie Duchemin, Norton H Neff, et al. CREB involvement in the regulation of striatal prodynorphin by nicotine[J]. Psychopharmacology, 2012, 221(1): 143-153.[78] Michael R Bruchas, Charles Chavkin. Kinase cascades and ligand-directed signaling at the kappa opioid receptor [J]. Psychopharmacology (Berl), 2010, 210(2): 137-147.[79] Raman M, Chen W, Cobb M H. Differential regulation and properties of MAPKs [J]. Oncogene, 2007, 26(22): 3100-3112.[80] Karandikar M, Cobb M H. Scaffolding and protein interactions in MAP kinase modules [J]. Cell Calcium, 1999, 26(5): 219-226.[81] Jay P McLaughlin, Xu Mei, Ken Mackie, et al. Phosphorylation of a carboxyl-terminal serine within the kappa-opioid receptor produces desensitization and internalization [J]. J Biol Chem, 2003, 278(36): 34631-34640.[82] Wang Yu-jun, Hang Ai, Lu Yu-chen, et al. κ Opioid receptor activation in different brain regions differentially modulates anxiety-related behaviors in mice [J]. Neuropharmacology, 2016, 110(Pt A): 92-101.[83] Michael R Bruchas, Tara A Macey, Janet D Lowe, et al. Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes [J]. J Biol Chem, 2006, 281(26): 18081-18089.[84] Zan G Y, Wang Q, Wang Y J, et al. p38 mitogen-activated protein kinase activation in amygdala mediates κ opioid receptor agonist U50,488H-induced conditioned place aversion [J]. Neuroscience, 2016, 320:122-128.[85] Floor van Heesch, Jolanda Prins, Jan Pieter Konsman, et al. Lipopolysaccharide-induced anhedonia is abolished in male serotonin transporter knockout rats: an intracranial self-stimulation study [J]. Brain Behav Immun, 2013, 29: 98-103.[86] Yvonne Couch, Daniel C Anthony, Oleg Dolgov, et al. Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia [J]. Brain Behav Immun, 2013, 29: 136-146.[87] Michael R Bruchas, Abigail G Schindler, Haripriya Shankar, et al. Selective p38α MAPK deletion in serotonergic neurons produces stress resilience in models of depression and addiction [J]. Neuron, 2011, 71(3): 498-511.[88] Zhu Chong-Bin, Ana M Carneiro, Wolfgang R Dostmann, et al. p38 MAPK activation elevates serotonin transport activity via a trafficking-independent, protein phosphatase 2A-dependent process [J]. J Biol Chem, 2005, 280(16): 15649-15658. |
[1] | 谢彬, 黄志源, 林多朵, 杨福龙, 谢奕彬. 针药结合干预阿尔茨海默病抑郁症状效果分析[J]. 神经药理学报, 2020, 10(5): 5-8. |
[2] | 莫翠英, 骆国平. 尼麦角林联合曲舍林及心理治疗对脑卒中后抑郁患者抑郁情绪的影响[J]. 神经药理学报, 2020, 10(2): 7-10. |
[3] | 付至江, 高云,张伟,等. 抑郁症对大鼠骨折愈合的影响的实验研究[J]. 神经药理学报, 2018, 8(6): 1-8. |
[4] | 孙毅,谭博,苏瑞斌. 偏向性配体——阿片类镇痛药设计新思路[J]. 神经药理学报, 2018, 8(2): 1-7. |
[5] | 王晋辉,黄丽,陈娜. 大脑皮层GABA 能神经元缺血性损伤:易损性,机制和病理影响[J]. 神经药理学报, 2018, 8(2): 8-25. |
[6] | CHEN Fang,Arijit Ghosh,TANG Su-su,HONG Hao. Preventive Effect of Genetic Knockdown and Pharmacological Blockade of CysLT1R on Lipopolysaccharide(LPS)-induced Memory Deficit and Neurotoxicity in vivo[J]. 神经药理学报, 2018, 8(2): 29-29. |
[7] | 肖雁,黄赟,刘雨霞,田茂,齐晓岚,禹文峰,官志忠. H2S 在缺血再灌注损伤中神经细胞自噬发生机制中的作用研究[J]. 神经药理学报, 2018, 8(2): 39-39. |
[8] | 肖 婷, 马天阳, 徐祥清, 王克威. 大鼠慢性不可预测温和应激与小鼠社会挫败抑郁症模型的建立与行为学评价[J]. 神经药理学报, 2018, 8(1): 45-53. |
[9] | 梁慧,程涛,梁建辉. 焦虑抑郁共病障碍的研究进展[J]. 神经药理学报, 2017, 7(6): 30-35. |
[10] | 张阔,杨静玉,吴春福. 抑郁症的病理生理学基础及动物模型研究进展[J]. 神经药理学报, 2017, 7(4): 8-16. |
[11] | 任倩,王真真,陈乃宏. MicroRNA调控神经可塑性在抑郁症中作用研究进展[J]. 神经药理学报, 2017, 7(3): 12-20. |
[12] | 邹征强,程玉芳,汪海涛,周中振,陈佳佳,冯红方,徐江平. PDE4 抑制剂FCPR03 对LPS 诱导小鼠抑郁样行为的改善作用及其机制研究[J]. 神经药理学报, 2017, 7(3): 43-43. |
[13] | 詹向红*,刘永,宋萍,韩贺云,潘玉颖,孙前明. 轻中度抑郁症患者认知功能损伤的事件相关电位研究[J]. 神经药理学报, 2017, 7(3): 52-52. |
[14] | 钟秋萍,钟佳宏,余汇,程玉芳,汪海涛,徐江平*. 新型PDE4抑制剂FCPR16的抗抑郁作用及机制研究[J]. 神经药理学报, 2017, 7(3): 57-57. |
[15] | 冯红芳,陈佳佳,邹征强,汪海涛,徐江平*. 罗氟司特对脓毒血症小鼠的作用及其机制研究[J]. 神经药理学报, 2017, 7(3): 65-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||