神经药理学报 ›› 2016, Vol. 6 ›› Issue (4): 50-64.DOI: 10.3969/j.issn.2095-1396.2016.04.008
• 综述 • 上一篇
张楠,邢媛, 张炜
出版日期:
2016-08-26
发布日期:
2016-08-31
通讯作者:
张炜,女,教授,博士生导师;研究方向:神经药理学;E-mail:weizhang@hebmu.edu.cn
作者简介:
张楠,男,博士研究生;研究方向:神经药理学;E-mail:jlx88cn@163.com
邢媛,女,博士研究生;研究方向:神经药理学;E-mail:leaf-trunks@163.com
基金资助:
国家自然科学基金项目(No.NSFC 31200808)
ZHANG Nan,XING Yuan,ZHANG Wei
Online:
2016-08-26
Published:
2016-08-31
Contact:
张炜,女,教授,博士生导师;研究方向:神经药理学;E-mail:weizhang@hebmu.edu.cn
About author:
张楠,男,博士研究生;研究方向:神经药理学;E-mail:jlx88cn@163.com
邢媛,女,博士研究生;研究方向:神经药理学;E-mail:leaf-trunks@163.com
Supported by:
国家自然科学基金项目(No.NSFC 31200808)
摘要: 人胰岛淀粉样多肽(human amylin,hAmylin)是 2 型糖尿病患者胰岛中淀粉样蛋白沉积的主要成分,是由 37 个氨基酸组成的多肽。生理状态下,hAmylin 与胰岛素共同产生并储存于胰岛β细胞,按 1 ∶ 100 的比例共同分泌,且促进胰岛素分泌的因素亦均可促进 hAmylin 分泌。hAmylin 的单体结构未折叠,呈不稳定状态。与β淀粉样蛋白(amyloid β peptide,Aβ)一样,hAmylin 的细胞毒性与其单体状态不稳定,易发生聚集,形成寡聚物及纤维结构的特性有关。hAmylin 的聚集会对细胞造成不可逆的损伤。该文重点综述了 hAmylin 的结构、聚集与脂质膜的相互作用、毒性及其毒性抑制剂的最新研究进展。
张楠,邢媛, 张炜. 胰岛淀粉样多肽的分子结构、毒性及其抑制因素[J]. 神经药理学报, 2016, 6(4): 50-64.
ZHANG Nan,XING Yuan,ZHANG Wei. Molecular Structure,Cytotoxicity and Inhibitive Factors of Human Amylin[J]. Acta Neuropharmacologica, 2016, 6(4): 50-64.
[1] Fabrizio Chiti, Christopher M Dobson. Protein misfolding, functional amyloid, and human disease[J]. Annual Review of Biochemistry, 2006, 75: 333-366.[2] Jean D Sipe, A S Cohen. Amyloidosis: critical reviews in clinical laboratory[J] Sciences, 1994, 31(4): 325-354.[3] Dennis J Selkoe. Folding proteins in fatal ways[J]. Nature, 2003, 426(6968): 900-904.[4] Jo W M Höppener, Bo Ahrén, Cornelis J M Lips. Islet amyloid and type 2 diabetes mellitus[J]. J New England Medicine, 2000, 343(6): 411-419.[5] Glenner G G, Eanes E D, Bladen H A, et al. β-pleated sheet fibrils a comparison of native amyloid with synthetic protein fibrils[J]. J Histochemistry & Cytochemistry, 1974, 22(12): 1141-1158.[6] Sorin Luca, Wai-Ming Yau, Richard Leapman, et al. Peptide conformation and supramolecular organization in amylin fibrils: Constraints from solid state NMR[J]. Biochemistry, 2007, 46(47): 13505-13522.[7] Cooper G J, Willis A C, Clark A, et al. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients[J]. Proceedings of the National Academy of Sciences, 1987, 84(23): 8628-8632.[8] Per Westermark, Christer Wernstedt, Erik Wilander, et al. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells[J]. Proceedings of the National Academy of Sciences, 1987, 84(11): 3881-3885.[9] Per Westermark, Christer Wernstedt, Erik Wilander, et al. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas[J]. Biochemical Biophysical Research Communications, 1986, 140(3): 827-831.[10] Cooper G J, Leighton B, Dimitriadis G D, et al. Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle[J]. Proceedings of the National Academy of Sciences, 1988, 85(20): 7763-7766.[11] Per Westermark, Arne Andersson, Gunilla T Westermark. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus[J]. Physiological Rev, 2011, 91(3): 795-826.[12] Melvin Samsom, Lawrence A Szarka, Michael Camilleri, et al. Pramlintide, an amylin analog, selectively delays gastric emptying: potential role of vagal inhibition[J]. J American Physiology-Gastrointestinal and Liver Physiology, 2000, 278(6): G946-G951.[13] Ian Chapman, Barbara Parker, Selena Doran, et al. Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes[J]. Diabetologia, 2005, 48(5): 838-848.[14] Ian Chapman, Barbara Parker, Selena Doran, et al. Low‐dose pramlintide reduced food intake and meal duration in healthy, normal‐weight subjects[J]. Obesity, 2007, 15(5): 1179-1186.[15] Bjorn Akesson, Georgios Panagiotidis, Per Westermark, et al. Islet amyloid polypeptide inhibits glucagon release and exerts a dual action on insulin release from isolated islets[J]. Regulatory Peptides, 2003, 111(1): 55-60.[16] Paul A Rushing, Mary M Hagan, Rabdy J Seeley, et al. Inhibition of central amylin signaling increases food intake and body adiposity in rats[J]. Endocrinology, 2001, 142(11): 5035-5035.[17] Robert A Ritzel, Juris J Meier, Chia-Yu Lin, et al. Human islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets[J]. Diabetes, 2007, 56(1): 65-71.[18] Peter J Wookey, C Tikellis, H C Du, et al. Amylin binding in rat renal cortex, stimulation of adenylyl cyclase, and activation of plasma renin[J]. J American Physiology-Renal Physiology, 1996, 270(2): F289-F294.[19] Patrick M Sexton, George Paxinos, Huang Xu-feng, et al. In vitro autoradiographic localization of calcitonin binding sites in human medulla oblongata[J]. J Comparative Neurology, 1994, 341(4): 449-463.[20] Paxinos G, Chai S Y, Christopoulos G, et al. In vitro autoradiographic localization of calcitonin and amylin binding sites in monkey brain[J]. J Chemical Neuroanatomy, 2004, 27(4): 217-236.[21] M Stridsberg, Stellan Sandler, Erik Wilander. Cosecretion of islet amylid polypeptide (IAPP) and insulin from isolated rat pancreatic islets following stimulation or inhibition of β-cell function[J]. Regulatory Peptides, 1993, 45(3): 363-370.[22] A Lukinius, E Wilander, G T Westermark, et al. Co-localization of islet amyloid polypeptide and insulin in the B cell secretory granules of the human pancreatic islets[J]. Diabetologia, 1989, 32(4): 240-244.[23] Steven E Kahn, David A D'Alessio, Michael W Schwartz, et al. Evidence of cosecretion of islet amyloid polypeptide and insulin by β-cells[J]. Diabetes, 1990, 39(5): 634-638.[24] Machi Furuta, Hideki Yano, Zhou An, et al. Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2[J]. Proceedings of the National Academy of Sciences, 1997, 94(13): 6646-6651.[25] Mieczyslaw Marcinkiewicz, Ramla D, Nabil G Seidah, et al. Developmental expression of the prohormone convertases PC1 and PC2 in mouse pancreatic islets[J]. Endocrinology, 1994, 135(4): 1651-1660.[26] Lucy Marzban, Christopher J Rhodes, Donald F Steiner, et al. Impaired NH2-terminal processing of human proislet amyloid polypeptide by the prohormone convertase PC2 leads to amyloid formation and cell death[J]. Diabetes, 2006, 55(8): 2192-2201.[27] Paulsson J F, Andersson A, Westermark P, et al. Intracellular amyloid-like deposits contain unprocessed pro-islet amyloid polypeptide (proIAPP) in beta cells of transgenic mice overexpressing the gene for human IAPP and transplanted human islets[J]. Diabetologia, 2006, 49(6): 1237-1246.[28] Claire E Higham, Emma T A S Jaikaran, Paul E Fraser, et al. Preparation of synthetic human islet amyloid polypeptide (IAPP) in a stable conformation to enable study of conversion to amyloid‐like fibrils[J]. FEBS Letters, 2000, 470(1): 55-60.[29] Goldsbury C, Goldie K, Pellaud J, et al. Amyloid fibril formation from full-length and fragments of amylin[J]. J Structural Biology, 2000, 130(2-3): 352-362.[30] Rakez Kayed, Jurgen Bernhagen, Norma Greenfield, et al. Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro[J]. J Molecular Biology, 1999, 287(4): 781-796.[31] Rakez Kayed, Anna Pensalfini, Larry Margol, et al. Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer[J]. J Biological Chemistry, 2009, 284(7): 4230-4237.[32] Jefferson D Knight, James A Hebda, Andrew D Miranker. Conserved and cooperative assembly of membrane-bound α-helical states of islet amyloid polypeptide[J]. Biochemistry, 2006, 45(31): 9496-9508.[33] Yair Porat, Alex Stepensky, Ding Fa-xiang, et al. Completely different amyloidogenic potential of nearly identical peptide fragments[J]. Biopolymers, 2003, 69(2): 161-164.[34] Green J D, Kreplak L, Goldsbury C, et al. Atomic force microscopy reveals defects within mica supported lipid bilayers induced by the amyloidogenic human amylin peptide[J]. J Molecular Biology, 2004, 342(3): 877-887.[35] Janelle D Green, Claire Goldsbury, Joerg Kistler, et al. Human amylin oligomer growth and fibril elongation define two distinct phases in amyloid formation[J]. J Biological Chemistry, 2004, 279(13): 12206-12212.[36] Magdalena Anguiano, Richard J Nowak, Peter T Lansbury. Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes[J]. Biochemistry, 2002, 41(38): 11338-11343.[37] Juliette Janson, R H Ashley, D Harrison, et al. The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles[J]. Diabetes, 1999, 48(3): 491-498.[38] Claire S Goldsbury, Garth J S Cooper, Kenneth N Goldie, et al. Polymorphic fibrillar assembly of human amylin[J]. J Structural Biology, 1997, 119(1): 17-27.[39] Jed J W Wiltzius, Stuart A Sievers, Michael R Sawaya, et al. Atomic structure of the cross‐β spine of islet amyloid polypeptide (amylin) [J]. Protein Science, 2008, 17(9): 1467-1474.[40] Sajith A Jayasinghe, Ralf Langen. Lipid membranes modulate the structure of islet amyloid polypeptide[J]. Biochemistry, 2005, 44(36): 12113-12119.[41] Lucie Caillon, Olivier Lequin, Lucie Khemtémourian. Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013, 1828(9): 2091-2098.[42] Patil S M, Xu S, Sheftic S R, et al. Dynamic α-helix structure of micelle-bound human amylin[J]. J Biological Chemistry, 2009, 284(18): 11982-11991.[43] Ravi Prakash Reddy Nanga, Jeffrey R Brender, Subramanian Vivekanandan, et al. Structure and membrane orientation of IAPP in its natively amidated form at physiological pH in a membrane environment[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2011, 1808(10): 2337-2342.[44] Arjan Quist, Ivo Doudevski, Lin Hai, et al. Amyloid ion channels: a common structural link for protein-misfolding disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10427-10432.[45] Shae B Padrick, Andrew D Miranker. Islet amyloid: phase partitioning and secondary nucleation are central to the mechanism of fibrillogenesis[J]. Biochemistry, 2002, 41(14): 4694-4703.[46] Hironobu Naiki, Keiichi Higuchi, Massanori Hosokawa, et al. Fluorometric determination of amyloid fibrils in vitro using the fluorescent dye, thioflavine T[J]. Analytical Biochemistry, 1989, 177(2): 244-249.[47] Peter J Marek, Vadim Patsalo, David F Green, et al. Ionic strength effects on amyloid formation by amylin are a complicated interplay between Debye screening, ion selectivity, and Hofmeister effects[J]. Biochemistry, 2012, 51(43): 8478.[48] Lucie Khemtémourian, Elena Doménech, Jacques P F Doux, et al. Low pH acts as inhibitor of membrane damage induced by human islet amyloid polypeptide[J]. J American Chemical Society, 2011, 133(39): 15598-15604.[49] Sanke T, Bell G I, Sample C, et al. An islet amyloid peptide is derived from an 89-amino acid precursor by proteolytic processing[J]. J Biological Chemistry, 1988, 263(33): 17243-17246.[50] Westermark P, Engström U, Johnson K H, et al. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(13): 5036-5040.[51] Christer Betsholtz, Lars Christmansson, Ulla Engström, et al. Sequence divergence in a specific region of islet amyloid polypeptide (IAPP) explains differences in islet amyloid formation between species[J]. FEBS Letters, 1989, 251(1-2): 261-264.[52] Maarten F M Engel, HaciAli Yigittop, Ronald C Elgersma, et al. Islet amyloid polypeptide inserts into phospholipid monolayers as monomer[J]. J Molecular Biology, 2006, 356(3): 783-789.[53] Lucie Khemtémourian, Maarten F M Engel, Rob M J Liskamp, et al. The N-terminal fragment of human islet amyloid polypeptide is non-fibrillogenic in the presence of membranes and does not cause leakage of bilayers of physiologically relevant lipid composition[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2010, 1798(9): 1805-1811.[54] Melanie R Nilsson, Daniel P Raleigh. Analysis of amylin cleavage products provides new insights into the amyloidogenic region of human amylin[J]. J Molecular Biology, 1999, 294(5): 1375-1385. [55] Ravi Prakash Reddy Nanga, Jeffrey R Brender, Xu Jia-di, et al. Structures of rat and human islet amyloid polypeptide IAPP1–19 in micelles by NMR spectroscopy[J]. Biochemistry, 2008, 47(48): 12689.[56] Emma T A S Jaikaran, Claire E Higham, Louise C Serpell, et al. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis[J]. J Molecular Biology, 2001, 308(3): 515-525.[57] Andisheh Abedini, Daniel P Raleigh. The role of His-18 in amyloid formation by human islet amyloid polypeptide[J]. Biochemistry, 2005, 44(49): 16284-16291.[58] Sylvia M Tracz, Andisheh Abedini, Miles Driscoll, et al. Role of aromatic interactions in amyloid formation by peptides derived from human amylin[J]. Biochemistry, 2004, 43(50): 15901-15908.[59] Peter Marek, Andisheh Abedini, Song Ben-ben, et al. Aromatic interactions are not required for amyloid fibril formation by islet amyloid polypeptide but do influence the rate of fibril formation and fibril morphology[J]. Biochemistry, 2008, 46(46): 3255-3261.[60] Ling-Hsien Tu, Daniel Raleigh. Analysis of the role of aromatic interactions in amyloid formation by islet amyloid polypeptide[J]. J Biophysical, 2013, 104(2): 47a.[61] Setsuya Sakagashira, Henry J Hiddinga, Kayoko Tateishi, et al. S20G mutant amylin exhibits increased in vitro amyloidogenicity and increased intracellular cytotoxicity compared to wild-type amylin[J]. J American Pathology, 2000, 157(6): 2101-2109.[62] Bon W Koo, Andrew D Miranker. Contribution of the intrinsic disulfide to the assembly mechanism of islet amyloid[J]. Protein Science, 2005, 14(14): 231-239.[63] Abedini A, Raleigh D. Destabilization of human IAPP amyloid fibrils by proline mutations outside of the putative amyloidogenic domain: Is there a critical amyloidogenic domain in human IAPP? [J]. J Molecular Biology, 2006, 355(2): 274-281.[64] Janelle Green, Claire Goldsbury, Thierry Mini, et al. Full-length rat amylin forms fibrils following substitution of single residues from human amylin[J]. J Molecular Biology, 2003, 326(4): 1147-1156.[65] Johan F Paulsson, Gunilla Westermark. Aberrant processing of human proislet amyloid polypeptide results in increased amyloid formation[J]. Diabetes, 2005, 54(7): 2117-2125.[66] Isaac T Yonemoto, Gerard J A Kroon, H Jane Dyson, et al. Amylin proprotein processing generates progressively more amyloidogenic peptides that initially sample the helical state[J]. Biochemistry, 2008, 47(37): 9900.[67] Monika Krampert, Jurgen Bernhagen, Jurgen Schmucker, et al. Amyloidogenicity of recombinant human pro-islet amyloid polypeptide (ProIAPP) [J]. Chemistry & Biology, 2000, 7(11): 855-871.[68] Meng Fan-ling, Andisheh Abedini, Song Ben-ben, et al. Amyloid formation by pro-islet amyloid polypeptide processing intermediates: examination of the role of protein heparan sulfate interactions and implications for islet amyloid formation in type 2 diabetes[J]. Biochemistry, 2007, 46(43): 12091-12099.[69] Lucie Khemtémourian, Gemma Lahoz Casarramona, Dennis P L Suylen, et al. Impaired processing of human proislet amyloid polypeptide is not a causative factor for fibril formation or membrane damage in vitro[J]. Biochemistry, 2009, 48(46): 10918-10925.[70] Roberts A N, Leighton B, Todd J A, et al. Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus[J]. Proceedings of the National Academy of Sciences, 1989, 86(24): 9662-9666.[71] Jefferson D Knight, Andrew D Miranker. Phospholipid catalysis of diabetic amyloid assembly[J]. J Molecular Biology, 2004, 341(5): 1175-1187.[72] Emma Sparr, Maarten F M Engel, Dmitri V Sakharov, et al. Islet amyloid polypeptide‐induced membrane leakage involves uptake of lipids by forming amyloid fibers[J]. FEBS Letters, 2004, 577(1-2): 117-120.[73] Kenji Sasahara, Kenichi Morigaki, Takashi Okazaki, et al. Binding of islet amyloid polypeptide to supported lipid bilayers and amyloid aggregation at the membranes[J]. Biochemistry, 2012, 51(35): 6908-6919.[74] Ejaz Ahmad, Aqeel Ahmad, Saurabh Singh, et al. A mechanistic approach for islet amyloid polypeptide aggregation to develop anti-amyloidogenic agents for type-2 diabetes[J]. Biochimie, 2011, 93(5): 793-805.[75] Lucie Khemtémourian, Maarten F M Engel, John A W Kruijtzer, et al. The role of the disulfide bond in the interaction of islet amyloid polypeptide with membranes[J]. J European Biophysics, 2010, 39(9): 1359-1364.[76] Zhao Hong-xia, Esa K J Tuominen, Paavo K J Kinnunen. Formation of amyloid fibers triggered by phosphatidylserine-containing membranes[J]. Biochemistry, 2004, 43(32): 10302-10307.[77] Michele F M Sciacca, Jeffrey R Brender, Dong-Kuk Lee, et al. Phosphatidylethanolamine enhances amyloid fiber dependent membrane fragmentation[J]. Biochemistry, 2012, 51(39): 7676-7684.[78] Arispe N, Rojas E, Pollard H B. Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum[J]. Proceedings of the National Academy of Sciences, 1993, 90(2): 567-571.[79] Tajib A Mirzabekov, Lin Meng-chin, Bruce L Kagan. Pore formation by the cytotoxic islet amyloid peptide amylin[J]. J Biological Chemistry, 1996, 271(4): 1988-1992.[80] Masahiro Kawahara, Yoichiro Kuroda, Nelson Arispe, et al. Alzheimer's β-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line[J]. J Biological Chemistry, 2000, 275(19): 14077-14083.[81] Arispe N, Pollard H B, Rojas E. Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes[J]. Proceedings of the National Academy of Sciences, 1993, 90(22): 10573-10577.[82] Rakez Kayed, Yuri Sokolov, Brian Edmonds, et al. Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases[J]. J Biological Chemistry, 2004, 279(45): 46363-46366.[83] Rakez Kayed, Elizabeth Head, Jennifer L Thompson, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis[J]. Science, 2003, 300(5618): 486-489.[84] Maarten F M Engel, Lucie Khemtémourian, Cecile C Kleijer, et al. Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane[J]. Proceedings of the National Academy of Sciences, 2008, 105(16): 6033-6038.[85] Asad Jan, Oskar Adolfsson, Igor Allaman, et al. Aβ42 Neurotoxicity Is Mediated by Ongoing Nucleated Polymerization Process Rather than by Discrete Aβ42 Species[J]. J Biological Chemistry, 2010, 286(10): 8585-8596.[86] Lucie Khemtémourian, J Antoinette Killian, Jo W M Höppener, et al. Recent Insights in Islet Amyloid Polypeptide-Induced Membrane Disruption and Its Role in β-Cell Death, in Type 2, Diabetes Mellitus[J]. Experimental Diabetes Research, 2008, 2008(1): 421287.[87] Gerald P Gellermann, Thomas R Appel, Astrid Tannert, et al. Raft lipids as common components of human extracellular amyloid fibrils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(18): 6297-6302.[88] Ran Friedman, Riccardo Pellarin, Amedeo Caflisch. Amyloid aggregation on lipid bilayers and its impact on membrane permeability[J]. J Molecular Biology, 2009, 387(2):407-415.[89] Kaleena Jackson, Gustavo A Barisone, Elva Diaz, et al. Amylin deposition in the brain: A second amyloid in Alzheimer disease? [J]. Annals of Neurology, 2013, 74(4): 517–526.[90] Sarah Srodulski, Savita Sharma, Adam B Bachstetter, et al. Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin[J]. Molecular Neurodegeneration, 2014, 9(1): 30.[91] Marie E Oskarsson, Johan F Paulsson, Sebastian W Schultz, et al. In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease[J]. J American Pathology, 2015, 185(3): 834-846.[92] Banks W A, Plotkin S R, Kastin A J. Permeability of the blood-brain barrier to soluble cytokine receptors[J]. Life Sciences, 1995, 57(22): 1993-2001.[93] Ganta V Chaitanya, Walter E Cromer, Shannon R Wells, et al. Gliovascular and cytokine interactions modulate brain endothelial barrier in vitro[J]. J Neuroinflammation, 2011, 8(1): 162.[94] Erika Andreetto, Yan Li-mei, Marianna Tatarek-Nossol, et al. Identification of hot regions of the Aβ-IAPP interaction interface as high-affinity binding sites in both cross‐and self‐association[J]. Angewandte Chemie International Edition, 2010, 49(17): 3081-3085.[95] Workalemahu M Berhanu, Fatih Yas?ar, Ulrich H E Hansmann. In silico cross seeding of Aβ and amylin fibril-like oligomers[J]. ACS Chemical Neuroscience, 2013, 4(11): 1488-1500.[96] Hu Run-dong, Zhang Ming-zhen, Chen Hong, et al. Cross-seeding interaction between β-amyloid and human islet amyloid polypeptide[J]. ACS Chemical Neuroscience, 2015, 6(10): 1759-1768.[97] Sorin Luca, Wai-Ming Yau, Richard Leapman, et al. Peptide conformation and supramolecular organization in amylin fibrils: Constraints from solid state NMR[J]. Biochemistry, 2007, 46(47): 13505.[98] Thorsten Lührs, Christiane Ritter, Marc Adrian, et al. 3D structure of Alzheimer's amyloid-β (1–42) fibrils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(48): 17342-17347.[99] Aneta T Petkova, Yoshitaka Ishii, John J Balbach, et al. A structural model for Alzheimer's β-amyloid fibrils based on experimental constraints from solid state NMR[J]. Proceedings of the National Academy of Sciences, 2002, 99(26): 16742-16747.[100] Serena Baglioni, Fiorella Casamenti, Monica Bucciantini, et al. Prefibrillar amyloid aggregates could be generic toxins in higher organisms[J]. J Neuroscience, 2006, 26(31): 8160-8167.[101] Monica Bucciantini, Giulia Calloni, Fabrizio Chiti, et al. Prefibrillar amyloid protein aggregates share common features of cytotoxicity[J]. J Biological Chemistry, 2004, 279(30): 31374-31382.[102] Angelo Demuro, Erene Mina, Rakez Kayed, et al. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers[J]. J Biological Chemistry, 2005, 280(17): 17294-17300.[103] Marcelo N N Vieira, Leticia Forny‐Germano, Leonardo M Saraiva, et al. Soluble oligomers from a non-disease related protein mimic Aβ-induced tau hyperphosphorylation and neurodegeneration[J]. J Neurochemistry, 2007, 103(2): 736-748.[104] Magdalena Anguiano, Richard J Nowak, Peter T Lansbury. Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes[J]. Biochemistry, 2002, 41(38): 11338-11343.[105] Masahiro Kawahara, Yoichiro Kuroda, Nelson Arispe, et al. Alzheimer's β-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line[J]. J Biological Chemistry, 2000, 275(19): 14077-14083.[106] Lim Yun-an, Lars M Ittner, Yun Li Lim, et al. Human but not rat amylin shares neurotoxic properties with Aβ42 in long-term hippocampal and cortical cultures[J]. FEBS Letters, 2008, 582(15): 2188-2194.[107] Jeffrey R Brender, Samer Salamekh, Ayyalusamy Ramamoorthy . Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular prospective[J]. Accounts of Chemical Research, 2012, 45(45):454-462.[108] Li Xiao-xu, Wan Ming-wei, Gao Liang-hui, et al. Mechanism of inhibition of human islet amyloid polypeptide-induced membrane damage by a small organic fluorogen[J]. Scientific Reports, 2016, 6:21614.[109] Maarten F M Engel, Lucie Khemtémourian, Cecile C Kleijer, et al. Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane[J]. Proceedings of the National Academy of Sciences, 2008, 105(16): 6033-6038.[110] Nicholas B Last, Elizabeth Rhoades, Andrew D Miranker. Islet amyloid polypeptide demonstrates a persistent capacity to disrupt membrane integrity[J]. Proceedings of the National Academy of Sciences, 2011, 108(23): 9460-9465.[111] Westermark P, Engström U, Johnson K H, et al. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(13): 5036-5040.[112] Jeffrey R Brender, Edgar L Lee, Kevin Hartman, et al. Biphasic effects of insulin on islet amyloid polypeptide membrane disruption[J]. J Biophysical, 2011, 100(3): 685-692.[113] Tajib A Mirzabekov, Lin Meng-chin, Bruce L Kagan. Pore formation by the cytotoxic islet amyloid peptide amylin[J]. J Biological Chemistry, 1996, 271(4): 1988-1992.[114] Arjan Quist, Ivo Doudevski, Lin Hai, et al. Amyloid ion channels: a common structural link for protein-misfolding disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10427-10432.[115] Fu Wen, Araya Ruangkittisakul, David MacTavish, et al. Amyloid β (Aβ) peptide directly activates amylin-3 receptor subtype by triggering multiple intracellular signaling pathways[J]. J Biological Chemistry, 2012, 287(22): 18820-18830.[116] Masahiro Kawahara, Yoichiro Kuroda, Nelson Arispe, et al. Alzheimer's β-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line[J]. J Biological Chemistry, 2000, 275(19): 14077-14083.[117] Mark P Mattson, Yadong Goodman. Different amyloidogenic peptides share a similar mechanism of neurotoxicity involving reactive oxygen species and calcium[J]. Brain Research, 1995, 676(1): 219-224.[118] Zhang Nan, Yang Sheng-chang, Wang Chang, et al. Multiple target of hAmylin on rat primary hippocampal neurons[J]. Neuropharmacology, 2017, 113(A): 241-251.[119] Westwell-Roper C, Denroche H C, Ehses J A, et al. Differential activation of innate immune pathways by distinct islet amyloid polypeptide (IAPP) aggregates[J]. J Biological Chemistry, 2016, 291(17): 8908-8917.[120] Judith Miklossy, Patrick L McGeer. Common mechanisms involved in Alzheimer's disease and type 2 diabetes: a key role of chronic bacterial infection and inflammation[J]. Aging (Albany NY), 2016, 8(4): 575.[121] Clara Y Westwell-Roper, Cyrus A Chehroudi, Heather C Denroche, et al. IL-1 mediates amyloid-associated islet dysfunction and inflammation in human islet amyloid polypeptide transgenic mice[J]. Diabetologia, 2015, 58(3): 575-585.[122] Yoo Jin Park, Garth L Warnock, Ao Zi-liang, et al. Dual role of IL-1β in islet amyloid formation and its β-Cell toxicity: implications in type 2 diabetes and islet transplantation[J]. Diabetes, Obesity and Metabolism, 2017, 19(5):682-694.[123] Seth L Masters, Aisling Dunne, Shoba L Subramanian, et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes[J]. Nature Immunology, 2010, 11(10): 897-904.[124] Clara Westwell-Roper, Derek L Dai, Galina Soukhatcheva, et al. IL-1 blockade attenuates islet amyloid polypeptide-induced proinflammatory cytokine release and pancreatic islet graft dysfunction[J]. J Immunology, 2011, 187(5): 2755-2765.[125] Clara Y Westwell-Roper, Jan A Ehses, C Bruce Verchere. Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1β production and β-cell dysfunction[J]. Diabetes, 2014, 63(5): 1698-1711.[126] Park Y J, Lee S, Kieffer T J, et al. Deletion of Fas protects islet beta cells from cytotoxic effects of human islet amyloid polypeptide[J]. Diabetologia, 2012, 55(4): 1035-1047.[127] Yoo Jin Park, Minna Woo, Timothy J Kieffer, et al. The role of caspase-8 in amyloid-induced beta cell death in human and mouse islets[J]. Diabetologia, 2014, 57(4): 765-775.[128] Jin G Sheng, Robert E Mrak, W Sue T Griffin. Neuritic plaque evolution in Alzheimer’s disease is accompanied by transition of activated microglia from primed to enlarged to phagocytic forms[J]. Acta Neuropathologica, 1997, 94(1): 1-5.[129] Haruhiko Akiyama, Steven Barger, Scott Barnum, et al. Inflammation and Alzheimer’s disease[J]. Neurobiol Aging. Neurobiology of Aging, 2000, 21(3): 383-421.[130] David Morgan, Marcia N Gordon, Tan Jun, et al. Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics[J]. Journal of Neuropathology & Experimental Neurology, 2005, 64(9): 743-753.[131] Michael T Heneka, Magdalena Sastre, Lucia Dumitrescu-Ozimek, et al. Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP [V717I] transgenic mice[J]. J Neuroinflammation, 2005, 2(1): 22.[132] Cacabelos R, Barquero M, Garcia P, et al. Cerebrospinal fluid interleukin-1 beta (IL-1 beta) in Alzheimer's disease and neurological disorders[J]. Methods and Findings in Experimental and Clinical Pharmacology, 1991, 13(7): 455-458.[133] Sachiko Tanaka, Masatoshi Ide, Toshiomi Shibutani, et al. Lipopolysaccharide-induced microglial activation induces learning and memory deficits without neuronal cell death in rats[J]. J Neuroscience Research, 2006, 83(4): 557-566.[134] John J O'Connor, Andrew N Coogan. Actions of the Pro-Inflammatory Cytokine Il-1[beta] on Central Synaptic Transmission[J]. Experimental Physiology, 1999, 84(4): 601-614.[135] Sarah Srodulski, Savita Sharma, Adam B Bachstetter, et al. Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin[J]. Molecular Neurodegeneration, 2014, 9(1): 30.[136] H Michael Tucker, Russell E Rydel, Sarah Wright, et al. Human amylin induces “apoptotic” pattern of gene expression concomitant with cortical neuronal apoptosis[J]. J Neurochemistry, 1998, 71(2): 506-516.[137] Dimitri Paola, Cinzia Domenicotti, Mariapaola Nitti, et al. Oxidative stress induces increase in intracellular amyloid β-protein production and selective activation of βI and βII PKCs in NT2 cells[J]. Biochemical and Biophysical Research Communications, 2000, 268(2): 642-646.[138] Fernanda G De Felice, Pauline T Velasco, Mary P Lambert, et al. Aβ oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine[J]. J Biological Chemistry, 2007, 282(15): 11590-11601.[139] Andrea C Paula-Lima, Tatiana Adasme, Carol SanMartin, et al. Amyloid β-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF[J]. Antioxidants & Redox Signaling, 2011, 14(7): 1209-1223.[140] Leonardo M Saraiva, Gisele S Seixas Da Silva, Antonio Galina, et al. Amyloid-β triggers the release of neuronal hexokinase 1 from mitochondria[J]. PloS One, 2010, 5(12): e15230.[141] Theresa R Bomfim, Leticia Forny-Germano, Luciana B Sathler, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease–associated Aβ oligomers[J]. J Clinical Investigation, 2012, 122(4): 1339-1353.[142] Angelo Colombo, Antonio Bastone, Cristina Ploia, et al. JNK regulates APP cleavage and degradation in a model of Alzheimer's disease[J]. Neurobiology of Disease, 2009, 33(3): 518-525.[143] S L Subramanian, R L Hull, S Zraika, et al. cJUN N-terminal kinase (JNK) activation mediates islet amyloid-induced beta cell apoptosis in cultured human islet amyloid polypeptide transgenic mouse islets[J]. Diabetologia, 2012, 55(1): 166-174.[144] Zhang Yun, Reza B Jalili, Garth L Warnock, et al. Three-dimensional scaffolds reduce islet amyloid formation and enhance survival and function of cultured human islets[J]. J American Pathology, 2012, 181(4): 1296-1305.[145] Marcos Mart??nez, Estrella Fernández-Vivancos, Ana Frank, et al. Increased cerebrospinal fluid Fas (Apo-1) levels in Alzheimer’s disease: relationship with IL-6 concentrations[J]. Brain Res, 2000, 869(1): 216-219.[146] Troy T Rohn, Elizabeth Head, William H Nesse, et al. Activation of caspase-8 in the Alzheimer's disease brain[J]. Neurobiology of Disease, 2001, 8(6): 1006-1016.[147] David T Yew, Li Wei-ping, Liu W K. Fas and activated caspase 8 in normal, Alzheimer and multiple infarct brains[J]. Neuroscience Letters, 2004, 367(1): 113-117.[148] Lars Feuk, Jonathan Prince, Gerome Breen, et al. Apolipoprotein-E dependent role for the FAS receptor in early onset Alzheimer's disease: finding of a positive association for a polymorphism in the TNFRSF6 gene[J]. Human Genetics, 2000, 107(4): 391-396.[149] Janelle N Fawver, Yonatan Ghiwot, Catherine Koola, et al. Islet amyloid polypeptide (IAPP): a second amyloid in Alzheimer's disease[J]. Current Alzheimer Research, 2014, 11(10): 928-940.[150] Brittany L Adler, Mark Yarchoan, Hae Min Hwang, et al. Neuroprotective effects of the amylin analogue pramlintide on Alzheimer's disease pathogenesis and cognition[J]. Neurobiology of Aging, 2014, 35(4): 793-801.[151] Qiu Wei-qiao, Zhu Hai-hao. Amylin and its analogs: a friend or foe for the treatment of Alzheimer's disease? [J] Frontiers in Aging Neuroscience, 2014, 6(1): 186.[152] Andisheh Abedini, Ann Marie Schmidt. Mechanisms of islet amyloidosis toxicity in type 2 diabetes[J]. Febs Letters, 2013, 587(8): 1119-1127.[153] Mamoun M Alhamadsheh, Stephen Connelly, Ahryon Cho, et al. Potent kinetic stabilizers that prevent transthyretin-mediated cardiomyocyte proteotoxicity[J]. Science Translational Medicine, 2011, 3(97): 97ra81-97ra81.[154] Jan Bieschke, Jenny Russ, Ralf P Friedrich, et al. EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity[J]. Proceedings of the National Academy of Sciences, 2010, 107(17): 7710-7715.[155] Alexander K Buell, Elin K Esbjörner, Patrick J Riss, et al. Probing small molecule binding to amyloid fibrils[J]. Physical Chemistry Chemical Physics, 2011, 13(45): 20044-20052.[156] Marie Daval, Sahar Bedrood, Tatyana Gurlo, et al. The effect of curcumin on human islet amyloid polypeptide misfolding and toxicity[J]. Amyloid, 2010, 17(3-4): 118-128.[157] Ehud Gazit. A possible role for π-stacking in the self-assembly of amyloid fibrils[J]. J FASEB, 2002, 16(1): 77-83.[158] Mihaela Necula, Rakez Kayed, Saskia Milton, et al. Small molecule inhibitors of aggregation indicate that amyloid β oligomerization and fibrillization pathways are independent and distinct[J]. J Biological Chemistry, 2007, 282(14): 10311-10324.[159] Daniel Sellin, Yan Li-mei, Aphrodite Kapurniotu, et al. Suppression of IAPP fibrillation at anionic lipid membranes via IAPP-derived amyloid inhibitors and insulin[J]. Biophysical Chemistry, 2010, 150(3): 73-79.[160] Per Westermark, Li Zhan-chun, Gunilla T Westermark, et al. Effects of beta cell granule components on human islet amyloid polypeptide fibril formation[J]. FEBS Letters, 1996, 379(3): 203-206.[161] Emma T A S Jaikaran, Melanie R Nilsson, Anne Clark. Pancreatic beta-cell granule peptides form heteromolecular complexes which inhibit islet amyloid polypeptide fibril formation[J]. J Biochemical, 2004, 377(3): 709-716.[162] Yogish C Kudva, Cheryl Mueske, Peter C Butler, et al. A novel assay in vitro of human islet amyloid polypeptide amyloidogenesis and effects of insulin secretory vesicle peptides on amyloid formation[J]. J Biochemical, 1998, 331(3): 809-813.[163] Jefferson D Knight, Jessica A Williamson, Miranker A D. Interaction of membrane‐bound islet amyloid polypeptide with soluble and crystalline insulin[J]. Protein Science, 2008, 17(10): 1850-1856.[164] Cui Wei, Ma Jing-wen, Lei Peng, et al. Insulin is a kinetic but not a thermodynamic inhibitor of amylin aggregation[J]. J Febs, 2009, 276(12): 3365-3371.[165] Sabina Janciauskiene, Sten Eriksson, Eric Carlemalm, et al. B cell granule peptides affect human islet amyloid polypeptide (IAPP) fibril formationin vitro[J]. Biochemical and Biophysical Research Communications, 1997, 236(3): 580-585.[166] Anna C Susa, Wu Chun, Summer L Bernstein, et al. Defining the molecular basis of amyloid inhibitors: human islet amyloid polypeptide–insulin interactions[J]. J American Chemical Society, 2014, 136(37): 12912-12919.[167] Sharon Gilead, Haguy Wolfenson, Ehud Gazit. Molecular mapping of the recognition interface between the islet amyloid polypeptide and insulin[J]. Angew Chem Int Ed Engl, 2006, 45(39): 6476-6480.[168] Anne H Armstrong, Jermont Chen, Angela Fortner Mckoy, et al. Mutations that replace aromatic side chains promote aggregation of the Alzheimer’s Aβ peptide[J]. Biochemistry, 2011, 50(19): 4058-4067.[169] Dagmar E Ehrnhoefer, Jan Bieschke, Annett Boeddrich, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers[J]. Nature Structural & Molecular Biology, 2008, 15(6): 558-566.[170] Sean A Hudson, Heath Ecroyd, Francis C Dehle, et al. (−)-Epigallocatechin-3-gallate (EGCG) maintains κ-casein in its pre-fibrillar state without redirecting its aggregation pathway[J]. J Molecular Biology, 2009, 392(3): 689-700.[171] Juan Miguel Lopez del Amo, Uwe Fink, Muralidhar Dasari, et al. Structural properties of EGCG-induced, nontoxic Alzheimer's disease Aβ oligomers[J]. J Molecular Biology, 2012, 421(4): 517-524.[172] Maarten F M Engel, Corianne C VandenAkker, Michael Schleeger, et al. The polyphenol EGCG inhibits amyloid formation less efficiently at phospholipid interfaces than in bulk solution[J]. J American Chemical Society, 2012, 134(36): 14781-14788.[173] Meng Fan-ling, Andisheh Abedini, Annette Plesner, et al. The Flavanol (−)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils and protects cultured cells against IAPP induced toxicity[J]. Biochemistry, 2010, 49(37): 8127-8133.[174] Harris Noor, Cao Ping, Daniel P Raleigh. Morin hydrate inhibits amyloid formation by islet amyloid polypeptide and disaggregates amyloid fibers[J]. Protein Science, 2012, 21(3): 373-382.[175] Yair Porat, Yariv Mazor, Shimon Efrat, et al. Inhibition of islet amyloid polypeptide fibril formation: a potential role for heteroaromatic interactions[J]. Biochemistry, 2004, 43(45): 14454-14462.[176] Cao Ping, Meng Fan-ling, Andisheh Abedini, et al. The ability of rodent islet amyloid polypeptide to inhibit amyloid formation by human islet amyloid polypeptide has important implications for the mechanism of amyloid formation and the design of inhibitors[J]. Biochemistry, 2010, 49(5): 872-881.[177] Sharon Gilead, Ehud Gazit. Inhibition of amyloid fibril formation by peptide analogues modified with alpha-aminoisobutyric acid[J]. Angewandte Chemie International Edition, 2004, 43(43): 4041-4044.[178] Yan Li-mei, Marianna Tatarek-Nossol, Aleksandra Velkova, et al. Design of a mimic of nonamyloidogenic and bioactive human islet amyloid polypeptide (IAPP) as nanomolar affinity inhibitor of IAPP cytotoxic fibrillogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(7): 2046-2051.[179] Li Xiao-ling, Ma Li-juan, Zheng Wen-jie, et al. Inhibition of islet amyloid polypeptide fibril formation by selenium-containing phycocyanin and prevention of beta cell apoptosis[J]. Biomaterials, 2014, 35(30): 8596-604.[180] Janine Seeliger, Alexander Werkmüller, Roland Winter. Macromolecular crowding as a suppressor of human IAPP fibril formation and cytotoxicity[J]. PLoS One, 2013, 8(7): e69652.[181] Meng Fan-ling, Peter Marek, Kathryn J Potter, et al. Rifampicin does not prevent amyloid fibril formation by human islet amyloid polypeptide but does inhibit fibril thioflavin-T interactions: implications for mechanistic studies of β-cell death[J]. Biochemistry, 2008, 47(22): 6016-6024. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||