神经药理学报 ›› 2013, Vol. 3 ›› Issue (5): 2-12.
• 专家论坛 • 下一篇
郭琳, 镇学初
出版日期:
2013-10-26
发布日期:
2014-06-27
通讯作者:
镇学初,男,教授,博士生导师;研究方向:神经精神药理;Tel:+86-0512-65880369,E-mail:zhenxuechu@suda.edu.cn
作者简介:
郭琳,男,博士;研究方向:神经药理;Tel:+86-0512-65880369,E-mail:guolin0724@163.com
GUO Lin, ZHEN Xue-chu
Online:
2013-10-26
Published:
2014-06-27
Contact:
镇学初,男,教授,博士生导师;研究方向:神经精神药理;Tel:+86-0512-65880369,E-mail:zhenxuechu@suda.edu.cn
About author:
郭琳,男,博士;研究方向:神经药理;Tel:+86-0512-65880369,E-mail:guolin0724@163.com
摘要: 精神分裂症是常见的精神系统疾病之一。自上世纪50年代来,已有两代抗精神分裂症药物被成功应用于临床实践,新一代抗精神分裂症药物正处于开发之中。其治疗靶点也由最初单一多巴胺D2受体拮抗扩展至多种神经递质受体。一些新的潜在靶点也处于研发中。本文就抗精神分裂症药物的治疗靶点、治疗机制和相关药物近来研究进展做一综述,并且总结了新一代抗精神分裂症药物的作用特征。
郭琳, 镇学初. 抗精神分裂症药物的新靶点和新机制 [J]. 神经药理学报, 2013, 3(5): 2-12.
GUO Lin, ZHEN Xue-chu. An Update on Antipsychotic Drugs: New Targets and New Mechanisms[J]. Acta Neuropharmacologica, 2013, 3(5): 2-12.
[1] John McGrath, Sukanta Saha, David Chant, et al. Schizophrenia: a concise overview of incidence, prevalence, and mortality[J]. Epidemiol Rev, 2008, 30: 67-76.[2] Erick L Messias, Chen Chuan-yu, William W Eaton. Epidemiology of schizophrenia: review of findings and myths[J]. Psychiatr Clin North Am, 2007, 30(3): 323-338.[3] Evelyn J Bromet, Shmuel Fennig. Epidemiology and natural history of schizophrenia[J]. Biol Psychiatry, 1999, 46(7): 871-881.[4] Pavo Filakovic, Anamarija Petek Eric. Pharmacotherapy of suicidal behaviour in major depression, schizophrenia and bipolar disorder[J]. Coll Antropol, 2013, 37(3): 1039-1044.[5] Murat Pakyurek, Rodney Yarnal, Cameron Carter. Treatment of psychosis in children and adolescents: a review[J]. Adolesc Med State Art Rev, 2013, 24(2): 420-432, ix.[6] David A Lewis, Jeffrey A Lieberman. Catching up on schizophrenia: natural history and neurobiology[J]. Neuron, 2000, 28(2): 325-334.[7] David St Clair, Xu Ming-qing, Wang Peng, et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961[J]. JAMA, 2005, 294(5): 557-562.[8] Ann B Goodman. Three independent lines of evidence suggest retinoids as causal to schizophrenia[J]. Proc Natl Acad Sci USA, 1998, 95(13): 7240-7244.[9] Ezra S Susser, Shang P Lin. Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944-1945[J]. Arch Gen Psychiatry, 1992, 49(12): 983-988.[10] Manti Srisurapanont, Robert Ali, John Marsden, et al. Psychotic symptoms in methamphetamine psychotic in-patients[J]. Int J Neuropsychopharmacol, 2003, 6(4): 347-352.[11] Tune L E, Wong D F, Pearlson G, et al. Dopamine D2 receptor density estimates in schizophrenia: a positron emission tomography study with 11C-N-methylspiperone[J]. Psychiatry Res, 1993, 49(3): 219-237.[12] Gerhard Gross, Karla Drescher. The role of dopamine D(3) receptors in antipsychotic activity and cognitive functions[J]. Handb Exp Pharmacol, 2012, 213: 167-210.[13] Ye Na, Wu Qian-qian, Zhu Li-yuan, et al. Further SAR study on 11-O-substituted aporphine analogues: identification of highly potent dopamine D3 receptor ligands[J]. Bioorg Med Chem, 2011, 19(6): 1999-2008.[14] Truffinet Philippe, Carol A Tamminga, Louis F Fabre, et al. Placebo-controlled study of the D4/5-HT2A antagonist fananserin in the treatment of schizophrenia[J]. Am J Psychiatry, 1999, 156(3): 419-425.[15] Tsuyoshi Hirose, Tetsuro Kikuchi. Aripiprazole, a novel antipsychotic agent: dopamine D2 receptor partial agonist[J]. J Med Invest, 2005, 52 Suppl: 284-290.[16] Adrian Newman-Tancredi, Mark S Kleven. Comparative pharmacology of antipsychotics possessing combined dopamine D2 and serotonin 5-HT1A receptor properties[J]. Psychopharmacology (Berl), 2011, 216(4): 451-473.[17] Philip Seeman, Johannes Schwarz, Chen Jiang-fan, et al. Psychosis pathways converge via D2high dopamine receptors[J]. Synapse, 2006, 60(4): 319-346.[18] Yoshihiro Tadori, Rpbert A Forbes, Robert D McQuade, et al. Receptor reserve-dependent properties of antipsychotics at human dopamine D2 receptors[J]. Eur J Pharmacol, 2009, 607(1-3): 35-40.[19] Ross Zimnisky, Gloria Chang, Istvan Gyertyan, et al. Cariprazine, a dopamine D(3)-receptor-preferring partial agonist, blocks phencyclidine-induced impairments of working memory, attention set-shifting, and recognition memory in the mouse[J]. Psychopharmacology (Berl), 2013, 226(1): 91-100.[20] Tanja Veselinovic, Michael Paulzen, Garhard Grunder. Cariprazine, a new, orally active dopamine D2/3 receptor partial agonist for the treatment of schizophrenia, bipolar mania and depression[J]. Expert Rev Neurother, 2013, 13(11): 1141-1159.[21] Minda R Lynch. Schizophrenia and the D1 receptor: focus on negative symptoms[J]. Prog Neuropsychopharmacol Biol Psychiatry, 1992, 16(6): 797-832.[22] Sawaguchi T, Goldman-Rakic PS. D1 dopamine receptors in prefrontal cortex: involvement in working memory[J]. Science, 1991, 251(4996): 947-950.[23] Jun Kosaka, Hidehiko Takahashi, Hiroshi Ito, et al. Decreased binding of [11C]NNC112 and [11C]SCH23390 in patients with chronic schizophrenia[J]. Life Sci, 2010, 86(21-22): 814-818.[24] Tomokazu Nakako, Takeshi Murai, Masaru Ikejiri, et al. Effects of a dopamine D1 agonist on ketamine-induced spatial working memory dysfunction in common marmosets[J]. Behav Brain Res, 2013, 249: 109-115.[25] Shikha Snigdha, Nagi Idris, Ben Grayson, et al. Asenapine improves phencyclidine-induced object recognition deficits in the rat: evidence for engagement of a dopamine D1 receptor mechanism[J]. Psychopharmacology (Berl), 2011, 214(4): 843-853.[26] Patricia S Goldman-Rakic, Stacy A Castner, Torgny H Svensson, et al. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction[J]. Psychopharmacology (Berl), 2004, 174(1): 3-16.[27] Davis K L, Kahn R S, Ko G, et al. Dopamine in schizophrenia: a review and reconceptualization[J]. Am J Psychiatry, 1991, 148(11): 1474-1486.[28] Sridhar Natesan, Greg E Reckless, Karen B Barlow, et al. The antipsychotic potential of l-stepholidine--a naturally occurring dopamine receptor D1 agonist and D2 antagonist[J]. Psychopharmacology (Berl), 2008, 199(2): 275-289.[29] Mo Jiao, Guo Yang, Yang Yu-she, et al. Recent developments in studies of l-stepholidine and its analogs: chemistry, pharmacology and clinical implications[J]. Curr Med Chem, 2007, 14(28): 2996-3002.[30] Guo Yang, Zhang Hai, Chen Xue-tao, et al. Evaluation of the antipsychotic effect of bi-acetylated l-stepholidine (l-SPD-A), a novel dopamine and serotonin receptor dual ligand[J]. Schizophr Res, 2009, 115(1): 41-49.[31] Heinz E Lehmann, Thomas A Ban. The history of the psychopharmacology of schizophrenia[J]. Can J Psychiatry, 1997, 42(2): 152-162.[32] Meltzer H Y, Massey B W. The role of serotonin receptors in the action of atypical antipsychotic drugs[J]. Curr Opin Pharmacol, 2011, 11(1): 59-67.[33] Herbert Y Meltzer, Li Zhu, Yasuhiro Kaneda, et al. Serotonin receptors: their key role in drugs to treat schizophrenia[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2003, 27(7): 1159-1172.[34] Snigdha S, Horiguchi M, Huang M, et al. Attenuation of phencyclidine-induced object recognition deficits by the combination of atypical antipsychotic drugs and pimavanserin (ACP 103), a 5-hydroxytryptamine(2A) receptor inverse agonist[J]. J Pharmacol Exp Ther, 2010, 332(2): 622-631.[35] Judith A Siuciak, Douglas S Chapin, Sheryl A McCarthy, et al. CP-809,101, a selective 5-HT2C agonist, shows activity in animal models of antipsychotic activity[J]. Neuropharmacology, 2007, 52(2): 279-290.[36] Michael Maes, Herbert Y Meltzer. Effects of meta-chlorophenylpiperazine on neuroendocrine and behavioral responses in male schizophrenic patients and normal volunteers[J]. Psychiatry Res, 1996, 64(3): 147-159.[37] Vincenzo Di Matteo, Giuseppe Di Giovanni, Michele Di Mascio, et al. Biochemical and electrophysiological evidence that RO 60-0175 inhibits mesolimbic dopaminergic function through serotonin(2C) receptors[J]. Brain Res, 2000, 865(1): 85-90.[38] Laia Llado-Pelfort, Noemi Santana, Valentina Ghisi, et al. 5-HT1A receptor agonists enhance pyramidal cell firing in prefrontal cortex through a preferential action on GABA interneurons[J]. Cereb Cortex, 2012, 22(7): 1487-1497.[39] M Victoria Puig, Akiya Watakabe, Mika Ushimaru, et al. Serotonin modulates fast-spiking interneuron and synchronous activity in the rat prefrontal cortex through 5-HT1A and 5-HT2A receptors[J]. J Neurosci, 2010, 30(6): 2211-2222.[40] Farhat Batool, Darakhshan J Haleem. Serotonin(1A) receptor agonism in the expression of behavioral dopaminergic supersensitivity in subchronic haloperidol treated rats[J]. Pak J Pharm Sci, 2008, 21(4): 411-420.[41] Newman-Tancredi A. The importance of 5-HT1A receptor agonism in antipsychotic drug action: rationale and perspectives[J]. Curr Opin Investig Drugs, 2010, 11(7): 802-812.[42] Marilyn A Davies, Douglas J Sheffler, Bryan L Roth. Aripiprazole: a novel atypical antipsychotic drug with a uniquely robust pharmacology[J]. CNS Drug Rev, 2004, 10(4): 317-336.[43] Jorn Arnt, Benny Bang-Andersen, Ben Grayson, et al. Lu AE58054, a 5-HT6 antagonist, reverses cognitive impairment induced by subchronic phencyclidine in a novel object recognition test in rats[J]. Int J Neuropsychopharmacol, 2010, 13(8): 1021-1033.[44] Zoltan Doleviczenyi, E Sylvester Vizi, Istvan Gacsalyi, et al. 5-HT6/7 receptor antagonists facilitate dopamine release in the cochlea via a GABAergic disinhibitory mechanism[J]. Neurochem Res, 2008, 33(11): 2364-2372.[45] Katarzyna Fijal, Pitor Popik, Agnieszka Nikiforuk. Co-administration of 5-HT6 receptor antagonists with clozapine, risperidone, and a 5-HT2A receptor antagonist: effects on prepulse inhibition in rats[J]. Psychopharmacology (Berl), 2014, 231(1): 269-281.[46] Julie Meffre, Severine Chaumont-Dubel, Clotilde Mannoury la Cour, et al. 5-HT(6) receptor recruitment of mTOR as a mechanism for perturbed cognition in schizophrenia[J]. EMBO Mol Med, 2012, 4(10): 1043-1056.[47] Agnieszka Nikiforuk, Tomasz Kos, Katarzyna Fijal, et al. Effects of the selective 5-HT7 receptor antagonist SB-269970 and amisulpride on ketamine-induced schizophrenia-like deficits in rats[J]. PLoS One, 2013, 8(6): e66695.[48] Agnieszka Nikiforuk, Piotr Popik. Amisulpride promotes cognitive flexibility in rats: the role of 5-HT7 receptors[J]. Behav Brain Res, 2013, 248: 136-140.[49] Ann M Mortimer. Novel antipsychotics in schizophrenia[J]. Expert Opin Investig Drugs, 2004, 13(4): 315-329.[50] Amy R Mohn, Raul R Gainetdinov, Marc G Caron, et al. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia[J]. Cell, 1999, 98(4): 427-436.[51] Joseph T Coyle, Alo Basu, Michael Benneyworth, et al. Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications[J]. Handb Exp Pharmacol, 2012, 213: 267-295.[52] Justine M Kent, Jeremy D Coplan, llise Lombardo, et al. Occupancy of brain serotonin transporters during treatment with paroxetine in patients with social phobia: a positron emission tomography study with 11C McN 5652[J]. Psychopharmacology(Berl), 2002, 164(4): 341-348.[53] Danuel C Javitt. Glutamatergic theories of schizophrenia[J]. Isr J Psychiatry Relat Sci, 2010, 47(1): 4-16.[54] Daniel C Javitt. Glycine transport inhibitors in the treatment of schizophrenia[J]. Handb Exp Pharmacol, 2012, 213: 367-399.[55] Toshiharu Shimazaki, Ayaka Kaku, Shigeyuki Chaki. D-Serine and a glycine transporter-1 inhibitor enhance social memory in rats[J]. Psychopharmacology (Berl), 2010, 209(3): 263-270.[56] Kenji Hashimoto, Yuko Fujita, Tamaki Ishima, et al. Phencyclidine-induced cognitive deficits in mice are improved by subsequent subchronic administration of the glycine transporter-1 inhibitor NFPS and D-serine[J]. Eur Neuropsychopharmacol, 2008, 18(6): 414-421.[57] Hsien-yuan Lane, Lin Ching-hua, Yu-jhen Huang, et al. A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for schizophrenia[J]. Int J Neuropsychopharmacol, 2010, 13(4): 451-460.[58] Liem-Moolenaar M, Zoethout R W, de Boer P, et al. The effects of a glycine reuptake inhibitor R231857 on the central nervous system and on scopolamine-induced impairments in cognitive and psychomotor function in healthy subjects[J]. J Psychopharmacol, 2010, 24(11): 1681-1687.[59] Kenji Hashimoto, Berend Malchow, Peter Falkai, et al. Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders[J]. Eur Arch Psychiatry Clin Neurosci, 2013, 263(5): 367-377.[60] Chiara Procaccini, Milica Maksimovic, Teemu Aitta-Aho, et al. Reversal of novelty-induced hyperlocomotion and hippocampal c-Fos expression in GluA1 knockout male mice by the mGluR2/3 agonist LY354740[J]. Neuroscience, 2013, 250: 189-200.[61] P Jeffrey Conn, Carrie K Jones. Promise of mGluR2/3 activators in psychiatry[J]. Neuropsychopharmacology, 2009, 34(1): 248-249.[62] Trabanco A A, Cid J M, Lavreysen H, et al. Progress in the developement of positive allosteric modulators of the metabotropic glutamate receptor 2[J]. Curr Med Chem, 2011, 18(1): 47-68.[63] Meiis Inan, Timothy J Petros, Stewart A Anderson. Losing your inhibition: linking cortical GABAergic interneurons to schizophrenia[J]. Neurobiol Dis, 2013, 53: 36-48.[64] Alessandro Guidotti, James Auta, John M Davis, et al. GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon[J]. Psychopharmacology (Berl), 2005, 180(2): 191-205.[65] Peter M Haddad, Amlan Das, Muhammad Ashfaq, et al. A review of valproate in psychiatric practice[J]. Expert Opin Drug Metab Toxicol, 2009, 5(5): 539-551.[66] Sawako Arai, Kazuhiro Takuma, Hiroyuki Mizoguchi, et al. GABAB receptor agonist baclofen improves methamphetamine-induced cognitive deficit in mice[J]. Eur J Pharmacol, 2009, 602(1): 101-104.[67] Sawako Arai, Kazuhiro Takuma, Hiroyuki Mizoguchi, et al. Involvement of pallidotegmental neurons in methamphetamine- and MK-801-induced impairment of prepulse inhibition of the acoustic startle reflex in mice: reversal by GABAB receptor agonist baclofen[J]. Neuropsychopharmacology, 2008, 33(13): 3164-3175.[68] Gandal M J, Sisti J, Klook K, et al. GABAB-mediated rescue of altered excitatory-inhibitory balance, gamma synchrony and behavioral deficits following constitutive NMDAR-hypofunction[J]. Transl Psychiatry, 2012, 2: e142.[69] Uwe Rudolph, Hanns Mohler. GABAA receptor subtypes: Therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism[J]. Annu Rev Pharmacol Toxicol, 2014, 54: 483-507.[70] Noemi Santana, Guadalupe Mengod, Francesc Artigas. Expression of alpha(1)-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT(2A) receptors[J]. Int J Neuropsychopharmacol, 2013, 16(5): 1139-1151.[71] Olivia Franberg, Monica M Marcus, Torgny H Svensson. Involvement of 5-HT2A receptor and alpha2-adrenoceptor blockade in the asenapine-induced elevation of prefrontal cortical monoamine outflow[J]. Synapse, 2012, 66(7): 650-660.[72] Alexander G E, Crutcher M D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing[J]. Trends Neurosci, 1990, 13(7): 266-271.[73] Jan Kehler, Jacob Nielsen. PDE10A inhibitors: novel therapeutic drugs for schizophrenia[J]. Curr Pharm Des, 2011, 17(2): 137-150.[74] Weber M, Breier M, Ko D, et al. Evaluating the antipsychotic profile of the preferential PDE10A inhibitor, papaverine[J]. Psychopharmacology (Berl), 2009, 203(4): 723-735.[75] Schmidt C J, Chapin D S, Cianfrogna J, et al. Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia[J]. J Pharmacol Exp Ther, 2008, 325(2): 681-690.[76] Tamminga C A, Carlsson A. Partial dopamine agonists and dopaminergic stabilizers, in the treatment of psychosis[J]. Curr Drug Targets CNS Neurol Disord, 2002, 1(2): 141-147.[77] Francois Gastambide, Marie Caroline Cotel, Gary Gilmour, et al. Selective remediation of reversal learning deficits in the neurodevelopmental MAM model of schizophrenia by a novel mGlu5 positive allosteric modulator[J]. Neuropsychopharmacology, 2012, 37(4): 1057-1066. |
[1] | 张帅,艾静. 谷氨酸功能异常与阿尔茨海默病[J]. 神经药理学报, 2018, 8(6): 9-20. |
[2] | 禹文峰,李成朋,韩飞,官志忠. 硫辛酸抑制AIF 介导的非Caspase 凋亡通路对多巴胺能神经元的保护机制[J]. 神经药理学报, 2018, 8(2): 40-40. |
[3] | 王静,程肖蕊,周文霞,张永祥. 快速老化模型小鼠海马囊泡谷氨酸转运体表达与兴奋性毒性关系的研究[J]. 神经药理学报, 2018, 8(2): 53-53. |
[4] | 孙争宇,李林*. 精神分裂症认知障碍研究进展[J]. 神经药理学报, 2017, 7(3): 60-60. |
[5] | 钟佳宏,汪海涛,徐江平. α - 突触核蛋白与帕金森病[J]. 神经药理学报, 2017, 7(2): 62-62. |
[6] | 白晖,张明, 张炜. 谷氨酸受体辅助亚单位的研究进展[J]. 神经药理学报, 2015, 5(2): 24-29. |
[7] | 凌鹏,李月月,钱恒,连晓媛. 星形胶质细胞对兴奋性氨基酸神经递质的调控及与癫痫的关系[J]. 神经药理学报, 2015, 5(2): 46-53. |
[8] | 李婧 孙建栋 苑玉和 陈乃宏. 谷氨酸能神经传递在抑郁症发病机制中的研究进展[J]. 神经药理学报, 2014, 4(1): 20-24. |
[9] | 郑立卿 . 作用于GABAA受体的药物与神经可塑性[J]. 神经药理学报, 2012, 2(6): 40-48. |
[10] | 董栋,王蕊. 抑郁症相关受体、细胞因子及信号通路的研究进展[J]. 神经药理学报, 2012, 2(5): 24-30. |
[11] | 蔡靓, 苏朝芬, 罗焕敏. 沉默突触的激活机制及其功能意义 [J]. 神经药理学报, 2012, 2(5): 51-56. |
[12] | 杲海霞, 乔晓温,敦洁宁, 董明纲,徐志伟,张海林. 瞬时受体电位M7通道与血小板源性生长因子和5-HT促进大鼠肺动脉平滑肌细胞增殖相关性的研究[J]. 神经药理学报, 2012, 2(3): 15-21. |
[13] | 张夏微, 张丹参. 雌激素和Glu-NMDA受体通路与学习记忆相关性的研究进展[J]. 神经药理学报, 2011, 1(6): 48-59. |
[14] | 张夏微, 张丹参, 薛贵平, 赵一洁, 金灿. 雌二醇对去卵巢大鼠学习记忆能力及脑内氨基酸水平的影响[J]. 神经药理学报, 2011, 1(5): 8-13. |
[15] | 赵楠,张有志,杨明,王伊文,赵毅民,宫泽辉,李云峰. 棉籽总黄酮抗抑郁活性及其对海马单胺水平的调节[J]. 神经药理学报, 2011, 1(4): 6-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||