[1] Yu Long-chuan, Hou Jun-feng, Fu Feng-hua, et al. Roles of calcitonin gene-related peptide and its receptors in pain-related behavioral responses in the central nervous system[J]. Neurosci Biobehv Rev, 2009, 33(8): 1185–1191.[2] Russell F A, King R, Smillie S J, et al. Calcitonin gene-related Peptide: physiology and pathophysiology[J]. Physiol Rev, 2014, 94(4): 1099-1142.[3] Denise van Rossum, Uwe Karsten Hanisch, Remi Quirion. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors[J]. Neurosci Biobehav Rev, 1997, 21(5): 649-678.[4] 刘芳薇, 洪炎国. 降钙素基因相关肽家族在疼痛和阿片耐受中的作用[J].生理学报, 2013, 65(3):347-354. [5] Stephen G Howitt, Kalle Kilk, Wang Yang, et al. The role of the 8-18 helix of CGRP8-37 in mediating high affinity binding to CGRP receptors, coulombic and steric interactions[J]. Br J Pharmacol, 2003, 138(2): 325-332.[6] Francois B Jolicoeur, Daniel Menard, Alain Fournier, et al. Structure-activity analysis of CGRP’s neurobehavioral effects[J]. Ann NY Acad Sci, 1992, 657:155-163.[7] Yu Long-chuan, Per Hansson, Tomas Lundeberg. The calcitonin gene-related peptide antagonist CGRP8-37 increases the latency to withdrawal responses in rats[J]. Brain Res, 1994, 653(1-2):223-230.[8] Yu Long-chuan, Per Hansson, Gunilla Brodda-Jansen, et al. Intrathecal CGRP8-37-induced bilateral increase in hindpaw withdrawal latency in rats with unilateral inflammation [J]. Br J Pharmacol, 1996, 117(1):43-50.[9] Yu Long-chun, Per Hansson, Lundeberg T. The calcitonin gene-related peptide antagonist CGRP8-37 increases the latency to withdrawal responses bilaterally in rats with unilateral experimental mononeuropathy, an effect reversed by naloxone[J]. Neuroscience, 1996, 71(2):523–531.[10] Yu Yi, Thomas Lundeberg, Yu Long-chuan. Role of calcitonin gene-related peptide and its antagonist on the evoked discharge frequency of wide dynamic range neurons in the dorsal horn of the spinal cord in rats[J]. Regul Pept, 2002, 103(1):23-27.[11] Yu Long-chuan, Per Hansson, Thomas Lundeberg. Opioid antagonists naloxone, beta-funaltrexamine and naltrindole, but not nor-binaltorphimine, reverse the increased hindpaw withdrawal latency in rats induced by intrathecal administration of the calcitonin gene-related peptide antagonist CGRP8-37[J]. Brain Res, 1995, 698(1-2):23-29.[12] Ballet S, Mauborgne A, Benoliel J J, et al. Polyarthritis-associated changes in the opioid control of spinal CGRP release in the rat[J]. Brain Res, 1998, 796(1):198-208. [13] Bao Lan, Jin Shan-xue, Zhang Chen, et al. Activation of delta opioid receptors induces receptor insertion and neuropeptide secretion[J]. Neuron, 2003, 37(1):121-133. [14] Sunita Chakrabarti, Martin Oppermann, Alan R Gintzler. Chronic morphine induces the concomitant phosphorylation and altered association of multiple signaling proteins: a novel mechanism for modulating cell signaling[J]. Proc Natl Acad Sci USA, 2001, 98(7):4209-4214.[15] Subrata Basu Ray, Himanshu Gupta, Yogendre Kumar Gupta. Up-regulation of m-opioid receptors in the spinal cord of morphine-tolerant rats[J]. J Biosci, 2004, 29(1):51-56.[16] Zhou Xiang, Li Jin-ju, Yu Long-chuan. Plastic changes of calcitonin gene-related peptide in morphine tolerance: behavioral and immunohistochemical study in rats[J]. J Neurosci Res, 2003, 74(4):622-629.[17] Kelly J Powell, Weiya Ma, Maaja Sutak, et al. Blockade and reversal of spinal morphine tolerance by peptide and non-peptide calcitonin gene-related peptide receptor antagonists[J]. Br J Pharmacol, 2000, 131(5):875-884.[18] Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals[J]. Pain, 1983, 16(2):109-110.[19] Li J J, Zhou X, Yu L C. Involvement of neuropeptide Y and Y1 receptors in antinociception in the arcuate nucleus of hypothalamus, an immunohistochemical and pharmacological study in intact rats and rats with inflammation[J]. Pain, 2005, 118(1-2):232-242.[20] Sun Yan-gang, Gu Xing-long, Yu Long-chuan. The neural pathway of galanin in the hypothalamic arcuate nucleus of rats: Activation of beta-endorphinergic neurons projecting to periaqueductal gray matter[J]. J Neurosci Res, 2007, 85(11):2400-2406. [21] Tony L Yaksh, Thomas A Rudy. Chronic catheterization of the spinal subarachnoid space[J]. Physiol Behav, 1976, 17(6):1031-1036.[22] Mizushima T, Obata K, Yamanaka H, et al. Activation of p38 MAPK in primary afferent neurons by noxious stimulation and its involvement in the development of thermal hyperalgesia[J]. Pain, 2005, 113(1-2):51-60.[23] Multon S, Pardutz A, Mosen J, et al. Lack of estrogen increases pain in the trigeminal formalin model: a behavioural and immunocytochemical study of transgenic ArKO mice[J]. Pain, 2005, 114(1-2):257-265.[24] Luis R Gardell, Wang Rui-zhong, Shannon E Burgess, et al. Sustained morphine exposure induces a spinal dynorphin-dependent enhancement of excitatory transmitter release from primary afferent fibers[J]. J Neurosci, 2002, 22(15):6747-6755.[25] Belanger S, Ma W, Chabot J G, et al. Expression of calcitonin gene-related peptide, substance P and protein kinase C in cultured dorsal root ganglion neurons following chronic exposure to mu, delta and kappa opiates[J]. Neuroscience, 2002, 115(2):441-453.[26] Forrest L Smith, Ruby R Javed, Mark J Elzey, et al. The expression of a high level of morphine antinociceptive tolerance in mice involves both PKC and PKA[J]. Brain Res, 2003, 985(1):78-88.[27] Wang Zhi-yong, Jean-Guy Chabot, Remi Quirion. On the possible role of ERK, p38 and CaMKII in the regulation of CGRPexpression in morphine-tolerant rats[J]. Mol Pain, 2011, 7:68-.[28] Wang Z, Ma W, Jean-Guy Chabot, et al. Calcitonin gene-related peptide as a regulator of neuronal CaMKII-CREB, microglial p38-NFκB and astroglial ERK-Stat1/3 cascades mediating the development of tolerance to morphine-induced analgesia[J]. Pain, 2010, 151(1):194-205. |