神经药理学报 ›› 2013, Vol. 3 ›› Issue (1): 48-64.
• 综述 • 上一篇
邱艳艳1,2,李俊旭1,何小华2
出版日期:
2013-02-26
发布日期:
2014-06-27
通讯作者:
李俊旭,男,博士,助理教授;研究方向:行为药理学;Tel: +01-716-8292482, Email: junxuli@buffalo.edu
基金资助:
美国国立卫生研究院NIH (1R01DA034806, 1R21DA033426)
QIU Yan-yan1,2, LI Jun-xu1, HE Xiao-hua2
Online:
2013-02-26
Published:
2014-06-27
Contact:
李俊旭,男,博士,助理教授;研究方向:行为药理学;Tel: +01-716-8292482, Email: junxuli@buffalo.edu
Supported by:
美国国立卫生研究院NIH (1R01DA034806, 1R21DA033426)
摘要: 咪唑啉I2受体是一种非G蛋白偶联受体,其生理功能及临床意义目前尚不十分清楚。近年大量研究表明I2受体通过相关配体介导多种行为学效应。激活咪唑啉I2受体可能产生镇痛、抗抑郁、调节阿片受体功能、神经元保护等多种药理学作用。本文着重介绍了I2受体的分布、细胞定位、分子结构、信号转导、内源性配体和选择性配体及其相关神经药理学效应的研究进展。
邱艳艳,李俊旭,何小华. 咪唑啉I2受体神经药理学研究进展[J]. 神经药理学报, 2013, 3(1): 48-64.
QIU Yan-yan, LI Jun-xu, HE Xiao-hua. The Neuropharmacology of Imiazoline-I2 Receptors[J]. Acta Neuropharmacologica, 2013, 3(1): 48-64.
[1] P Bousquet, J Feldman, J Schwartz. Central cardiovascular effects of alpha adrenergic drugs: differences between catecholamines and imidazolines[J]. J Pharmacol Exp Ther, 1984, 230(1):232-236.[2] Paul Ernsberger, Mary P Meeley, J John Mann, et al. Clonidine binds to imidazole binding sites as well as alpha 2-adrenoceptors in the ventrolateral medulla [J]. Eur J Pharmacol, 1987, 134(1):1-13.[3] V Lachaud-Pettiti, R A Podevin, Y Chretien, et al. Imidazoline-guanidinium and alpha 2-adrenergic binding sites in basolateral membranes from human kidney[J]. Eur J Pharmacol, 1991, 206(1):23-31.[4] C M Brown, A C Mackinnon, J C Mcgrath, et al. Alpha 2-adrenoceptor subtypes and imidazoline-like binding sites in the rat brain[J]. Br J Pharmacol, 1990, 99(4):803-809.[5] H De Vos, G Bricca, J De Keyser, et al. Imidazoline receptors, non-adrenergic idazoxan binding sites and alpha 2-adrenoceptors in the human central nervous system[J]. Neuroscience, 1994, 59(3):589-598.[6] Soundararajan Regunathan, Mary P Meeley, Donald J Reis. Expression of non-adrenergic imidazoline sites in chromaffin cells and mitochondrial membranes of bovine adrenal medulla[J]. Biochem Pharmacol, 1993, 45(8):1667-1675.[7] M C Michel, O E Brodde, B Schnepel, et al. [3H]idazoxan and some other alpha 2-adrenergic drugs also bind with high affinity to a nonadrenergic site[J]. Mol Pharmacol, 1989, 35(3):324-330.[8] R Zonnenchein, S Diamant, D Atlas. Imidazoline receptors in rat liver cells: a novel receptor or a subtype of alpha 2-adrenoceptors?[J]. Eur J Pharmacol, 1990, 190(1-2):203-215.[9] Susan L F Chan, Colin A Brown, Kay E Scarpello, et al. The imidazoline site involved in control of insulin secretion: characteristics that distinguish it from I1- and I2-sites [J]. Br J Pharmacol, 1994, 112(4):1065-1070.[10] A Renouard, P S Widdowson, A Cordi. [3H]-idazoxan binding to rabbit cerebral cortex recognises multiple imidazoline I2-type receptors: pharmacological characterization and relationship to monoamine oxidase[J]. Br J Pharmacol, 1993, 109(3):625-631.[11] Lisa A Lione, David J Nutt, Alan L Hudson. Characterisation and localisation of [3H]2-(2-benzofuranyl)-2-imidazoline binding in rat brain: a selective ligand for imidazoline I2 receptors[J]. Eur J Pharmacol, 1998, 353(1):123-135.[12] Nicholas Macinnes, Sheila L Handley. Autoradiographic localisation of [3H]2-BFI imidazoline I2 binding sites in mouse brain[J]. Eur J Pharmacol, 2005, 516(2):139-144.[13] Neil J Anderson, Patrick A Lupo, David J Nutt, et al. Characterisation of imidazoline I2 binding sites in pig brain [J]. Eur J Pharmacol, 2005, 519(1-2):68-74.[14] Emma S Robinson, Robin J Tyacke, David J Nutt, et al. Distribution of [(3)H]BU224, a selective imidazoline I(2) binding site ligand, in rat brain[J]. Eur J Pharmacol, 2002, 450(1):55-60.[15] Alison C Mackinnon, William S Redfern, Christine M Brown. [3H]-RS-45041-190: a selective high-affinity radioligand for I2 imidazoline receptors[J]. Br J Pharmacol, 1995, 116(2):1729-1736.[16] Sophia Diamant, Talia Eldar-Geva, Daphne Atlas. Imidazoline binding sites in human placenta: evidence for heterogeneity and a search for physiological function [J]. Br J Pharmacol, 1992, 106(1):101-108.[17] Regina Alemany, Gabriel Olmos, Jesus A Garcia-Sevilla. Chronic treatment with phenelzine and other irreversible monoamine oxidase inhibitors downregulates I2-imidazoline receptors in the brain and liver[J]. Ann N Y Acad Sci, 1995, 763:506-509.[18] C Carpene, P Collon, A Remaury, et al. Inhibition of amine oxidase activity by derivatives that recognize imidazoline I2 sites[J]. J Pharmacol Exp Ther, 1995, 272(2):681-688.[19] M D Lalies, A Hibell, A L Hudson, et al. Inhibition of central monoamine oxidase by imidazoline2 site-selective ligands[J]. Ann N Y Acad Sci, 1999, 881:114-117.[20] Frederique Tesson, Isabelle Limon-Boulez, Philippe Urban, et al. Localization of I2-imidazoline binding sites on monoamine oxidases[J]. J Biol Chem, 1995, 270(17):9856-9861.[21] Neil J Anderson, Isabelle Seif, David J Nutt, et al. Autoradiographical distribution of imidazoline binding sites in monoamine oxidase A deficient mice[J]. J Neurochem, 2006, 96(6):1551-1559.[22] Anne Remaury, Catherine Ordener, J Shih, et al. Relationship between I2 imidazoline binding sites and monoamine oxidase B in liver[J]. Ann N Y Acad Sci, 1999, 881:32-34.[23] Anne Remaury, Rita Raddatz, Catherine Ordener, et al. Analysis of the pharmacological and molecular heterogeneity of I(2)-imidazoline-binding proteins using monoamine oxidase-deficient mouse models[J]. Mol Pharmacol, 2000, 58(5):1085-1090.[24] Anne Remaury, Karine Missy, Angelo Parini. Characterization of [3H]idazoxan binding proteins in solubilized membranes from rabbit and human liver[J]. J Auton Nerv Syst, 1998, 72(2-3):111-117.[25] Zhu H, J E Piletz. Association between I(2) binding sites and monoamine oxidase-B activity in platelets[J]. Ann N Y Acad Sci, 2003, 1009:347-352.[26] G Reid Mcdonald, Aldo Olivieri, Rona R Ramsay, et al. On the formation and nature of the imidazoline I2 binding site on human monoamine oxidase-B[J]. Pharmacol Res, 2010, 62(6):475-488.[27] Frederique Tesson, Isabelle Limon, Angelo Parini. Tissue-specific localization of mitochondrial imidazoline-guanidinium receptive sites[J]. Eur J Pharmacol, 1992, 219(2):335-338.[28] Isabelle Limon, Isabelle Coupry, Stephen M Lanier, et al. Purification and characterization of mitochondrial imidazoline-guanidinium receptive site from rabbit kidney[J]. J Biol Chem, 1992, 267(30):21645-21649.[29] H Wang, S Regunathan, M P Meeley, et al. Isolation and characterization of imidazoline receptor protein from bovine adrenal chromaffin cells[J]. Mol Pharmacol, 1992, 42(5):792-801.[30] Gabriel Olmos, Regina Alemany, Jesus A Garcia-Sevilla. Pharmacological and molecular discrimination of brain I2-imidazoline receptor subtypes[J]. Naunyn Schmiedebergs Arch Pharmacol, 1996, 354(6):709-716.[31] Gabriel Olmos, Regina Alemany, M Assumpcio Boronat, et al. Pharmacologic and molecular discrimination of I2-imidazoline receptor subtypes[J]. Ann N Y Acad Sci, 1999, 881:144-160.[32] Pablo V Escriba, Andres Ozaita, Jesus A Garcia-Sevilla. Pharmacologic characterization of imidazoline receptor proteins identified by immunologic techniques and other methods[J]. Ann N Y Acad Sci, 1999, 881:8-25.[33] Magdalena Sastre, Pablo V Escriba, Donald J Reis, et al. Decreased number and immunoreactivity of I2-imidazoline receptors in the frontal cortex of suicide victims[J]. Ann N Y Acad Sci, 1995, 763:520-522.[34] M Sastre, P Ventayol, J A Garcia-Sevilla. Decreased density of I2-imidazoline receptors in the postmortem brain of heroin addicts[J]. Neuroreport, 1996, 7(2):509-512.[35] Jesus A Garcia-Sevilla, Pablo V Escriba, Claude Walzer, et al. Imidazoline receptor proteins in brains of patients with Alzheimer's disease[J]. Neurosci Lett, 1998, 247(2-3):95-98.[36] J I Martin-Gomez, J Ruiz, L F Callado, et al. Increased density of I2-imidazoline receptors in human glioblastomas[J]. Neuroreport, 1996, 7(8):1393-1396.[37] Soundararajan Regunathan, Marian J Evinger, Mary P Meeley, et al. Effects of clonidine and other imidazole-receptor binding agents on second messenger systems and calcium influx in bovine adrenal chromaffin cells[J]. Biochem Pharmacol, 1991, 42(10):2011-2018.[38] Michel Bidet, Philippe Poujeol, Angelo Parini. Effect of imidazolines on Na+ transport and intracellular pH in renal proximal tubule cells[J]. Biochim Biophys Acta, 1990, 1024(1):173-178.[39] Daphne Atlas. Clonidine-displacing substance (CDS) and its putative imidazoline receptor. New leads for further divergence of alpha 2-adrenergic receptor activity[J]. Biochem Pharmacol, 1991, 41(11):1541-1549.[40] Daphne Atlas, Yigal Burstein. Isolation and partial purification of a clonidine-displacing endogenous brain substance[J]. Eur J Biochem, 1984, 144(2):287-293.[41] Daphne Atlas, Yigal Burstein. Isolation of an endogenous clonidine-displacing substance from rat brain[J]. FEBS Lett, 1984, 170(2):387-390.[42] M P Meeley, P R Ernsberger, A R Granata, et al. An endogenous clonidine-displacing substance from bovine brain: receptor binding and hypotensive actions in the ventrolateral medulla[J]. Life Sci, 1986, 38(12):1119-1126.[43] Dennis Synetos, Vangelis G Manolopoulos, Daphne Atlas, et al. Human plasma-derived material with clonidine displacing substance (CDS)-like properties contracts the isolated rat aorta[J]. J Auton Pharmacol, 1991, 11(6):343-351.[44] H Goldberg-Stern, D Atlas, L Schwartz, et al. Detection and measurement of an endogenous clonidine-displacing substance in human cerebrospinal fluid[J]. Brain Res, 1993, 601(1-2):325-328.[45] Donald J Reis, Li Gen, Soundararajan Regunathan. Endogenous ligands of imidazoline receptors: classic and immunoreactive clonidine-displacing substance and agmatine[J]. Ann N Y Acad Sci, 1995, 763:295-313.[46] Sophia Diamant, Amiram Eldor, Daphne Atlas. A low molecular weight brain substance interacts, similarly to clonidine, with alpha 2-adrenoceptors of human platelets[J]. Eur J Pharmacol, 1987, 144(3):247-255.[47] Paul Ernsberger, Mary P Meeley, Donald J Reis. An endogenous substance with clonidine-like properties: selective binding to imidazole sites in the ventrolateral medulla[J]. Brain Res, 1988, 441(1-2):309-318.[48] I Coupry, D Atlas, R A Podevin, et al. Imidazoline-guanidinium receptive site in renal proximal tubule: asymmetric distribution, regulation by cations and interaction with an endogenous clonidine displacing substance[J]. J Pharmacol Exp Ther, 1990, 252(1):293-299.[49] S Regunathan, M P Meeley, D J Reis. Clonidine-displacing substance from bovine brain binds to imidazoline receptors and releases catecholamines in adrenal chromaffin cells[J]. Mol Pharmacol, 1991, 40(6):884-888.[50] G A Kreisberg, S Diamant, Y Z Diamant, et al. Raised levels of an endogenous nonadrenergic substance in the serum of pregnancy-induced hypertension patients[J]. Isr J Med Sci, 1987, 23(12):1194-1197.[51] Sophia Diamant, Daphne Atlas. An endogenous brain substance, CDS (clonidine-displacing-substance), inhibits the twitch response of rat vas deferens[J]. Biochem Biophys Res Commun, 1986, 134(1):184-190.[52] Pascal Bousquet, Josiane Feldman, Daphne Atlas. An endogenous, non-catecholamine clonidine antagonist increases mean arterial blood pressure[J]. Eur J Pharmacol, 1986, 124(1-2):167-170.[53] Mary P Meeley, A C Towle, Paul Ernsberger, et al. Clonidine-specific antisera recognize an endogenous clonidine-displacing substance in brain[J]. Hypertension, 1989, 13(4):341-351.[54] M Dontenwill, A Molines, G Bricca, et al. Production and characterization of an iminoimidazolidine specific monoclonal antibody using para-aminoclonidine as antigen[J]. Life Sci, 1992, 50(24):1859-1868.[55] Mary P Meeley, Martee L Hensley, Paul Ernsberger, et al. Evidence for a bioactive clonidine-displacing substance in peripheral tissues and serum[J]. Biochem Pharmacol, 1992, 44(4):733-740.[56] M Dontenwill, A Molines, A Verdun, et al. A circulating substance cross-reacting with antiimidazoline antibodies. Detection in serum in relation to essential hypertension[J]. J Clin Invest, 1993, 92(2):1068-1072.[57] Li Gen, S Regunathan, Colin J Barrow, et al. Agmatine: an endogenous clonidine-displacing substance in the brain[J]. Science, 1994, 263(5149):966-969.[58] Donald J Reis, Soundararajan Regunathan. Is agmatine a novel neurotransmitter in brain?[J]. Trends Pharmacol Sci, 2000, 21(5):187-193.[59] Christine A Parker, Alan L Hudson, David J Nutt, et al. Isolation of RP-HPLC pure clonidine-displacing substance from NG108-15 cells[J]. Eur J Pharmacol, 2000, 387(1):27-30.[60] Yang Xian-cheng, Donald J Reis. Agmatine selectively blocks the N-methyl-D-aspartate subclass of glutamate receptor channels in rat hippocampal neurons[J]. J Pharmacol Exp Ther, 1999, 288(2):544-549.[61] Feng Yan-zheng, Angelos E Halaris, John E Piletz. Determination of agmatine in brain and plasma using high-performance liquid chromatography with fluorescence detection[J]. J Chromatogr B Biomed Sci Appl, 1997, 691(2):277-286.[62] Charlotte Youngson, Soundararajan Regunathan, Hong Wang, et al. Coexpression of imidazoline receptors and agmatine in rat carotid body[J]. Ann N Y Acad Sci, 1995, 763:440-444.[63] H Wang, Soundararajan Regunathan, Charlotee Youngson, et al. An antibody to agmatine localizes the amine in bovine adrenal chromaffin cells[J]. Neurosci Lett, 1995, 183(1-2):17-21.[64] Frederique Tesson, Carina Prip-Buus, Antoinette Lemoine, et al. Subcellular distribution of imidazoline-guanidinium-receptive sites in human and rabbit liver. Major localization to the mitochondrial outer membrane[J]. J Biol Chem, 1991, 266(1):155-160.[65] W Raasch, Soundararajan Regunathan, Li Gen, et al. Agmatine, the bacterial amine, is widely distributed in mammalian tissues[J]. Life Sci, 1995, 56(26):2319-2330.[66] G J Molderings, K Schmidt, H Bonisch, et al. Inhibition of 5-HT3 receptor function by imidazolines in mouse neuroblastoma cells: potential involvement of sigma 2 binding sites[J]. Naunyn Schmiedebergs Arch Pharmacol, 1996, 354(3):245-252.[67] A Halaris, J Plietz. Agmatine : metabolic pathway and spectrum of activity in brain[J]. CNS Drugs, 2007, 21(11):885-900.[68] M K Sun, S Regunathan, D J Reis. Cardiovascular responses to agmatine, a clonidine-displacing substance, in anesthetized rat[J]. Clin Exp Hypertens, 1995, 17(1-2):115-128.[69] Gao Yu-qi, Bulent Gumusel, Gabor Koves, et al. Agmatine: a novel endogenous vasodilator substance[J]. Life Sci, 1995, 57(8):PL83-86.[70] Bela Szabo, Rolf Urban, Norbert Limberger, et al. Cardiovascular effects of agmatine, a "clonidine-displacing substance", in conscious rabbits[J]. Naunyn Schmiedebergs Arch Pharmacol, 1995, 351(3):268-273.[71] Yuri Kolesnikov, Subash Jain, Gavril W Pasternak. Modulation of opioid analgesia by agmatine[J]. Eur J Pharmacol, 1996, 296(1):17-22.[72] Feyza Aricioglu-Kartal, I Tayfun Uzbay. Inhibitory effect of agmatine on naloxone-precipitated abstinence syndrome in morphine dependent rats[J]. Life Sci, 1997, 61(18):1775-1781.[73] Stephen M Husbands, Richard A Glennon, Stephane Gorgerat, et al. Beta-carboline binding to imidazoline receptors[J]. Drug Alcohol Depend, 2001, 64(2):203-208.[74] Christine A Parker, Neil J Anderson, Emma S Robinson, et al. Harmane and harmalan are bioactive components of classical clonidine-displacing substance[J]. Biochemistry, 2004, 43(51):16385-16392.[75] I F Musgrave, E Badoer. Harmane produces hypotension following microinjection into the RVLM: possible role of I(1)-imidazoline receptors[J]. Br J Pharmacol, 2000, 129(6):1057-1059.[76] A Adell, T A Biggs, R D Myers. Action of harman (1-methyl-beta-carboline) on the brain: body temperature and in vivo efflux of 5-HT from hippocampus of the rat[J]. Neuropharmacology, 1996, 35(8):1101-1107.[77] Antonio Miralles, Susana Esteban, Antonio Sastre-Coll, et al. High-affinity binding of beta-carbolines to imidazoline I2B receptors and MAO-A in rat tissues: norharman blocks the effect of morphine withdrawal on DOPA/noradrenaline synthesis in the brain[J]. Eur J Pharmacol, 2005, 518(2-3):234-242.[78] Nicholas Macinnes, Sheila L Handley. Characterization of the discriminable stimulus produced by 2-BFI: effects of imidazoline I(2)-site ligands, MAOIs, beta-carbolines, agmatine and ibogaine[J]. Br J Pharmacol, 2002, 135(5):1227-1234.[79] Li Jun-Xu, Zhang Yan-an. Emerging drug targets for pain treatment[J]. Eur J Pharmacol, 2012, 681(1-3):1-5.[80] Li Jun-Xu, Zhang Yan-an. Imidazoline I2 receptors: target for new analgesics?[J]. Eur J Pharmacol, 2011, 658(2-3):49-56.[81] Shaifali Bhalla, Vaide Rapolaviciute, Anil Gulati. Determination of alpha(2)-adrenoceptor and imidazoline receptor involvement in augmentation of morphine and oxycodone analgesia by agmatine and BMS182874[J]. Eur J Pharmacol, 2011, 651(1-3):109-121.[82] Adair R Santos, Vinicius M Gadotti, Gerson L Oliveira, et al. Mechanisms involved in the antinociception caused by agmatine in mice[J]. Neuropharmacology, 2005, 48(7):1021-1034.[83] Ozgur Yesilyurt, I Tayfun Uzbay. Agmatine potentiates the analgesic effect of morphine by an alpha(2)-adrenoceptor-mediated mechanism in mice[J]. Neuropsychopharmacology, 2001, 25(1):98-103.[84] Aytui Onal, Necdet Soykan. Agmatine produces antinociception in tonic pain in mice[J]. Pharmacol Biochem Behav, 2001, 69(1-2):93-97.[85] Saniya Aggarwal, Behnam Shavalian, Esther Kim, et al. Agmatine enhances cannabinoid action in the hot-plate assay of thermal nociception[J]. Pharmacol Biochem Behav, 2009, 93(4):426-432.[86] John C Roberts, Brent M Grocholski, Kelley F Kitto, et al. Pharmacodynamic and pharmacokinetic studies of agmatine after spinal administration in the mouse[J]. J Pharmacol Exp Ther, 2005, 314(3):1226-1233.[87] Sandra C Roerig. Spinal and supraspinal agmatine activate different receptors to enhance spinal morphine antinociception[J]. Ann N Y Acad Sci, 2003, 1009:116-126.[88] Ana Flavia Paszcuk, Vinicius M Gadotti, Daiane Tibola, et al. Anti-hypernociceptive properties of agmatine in persistent inflammatory and neuropathic models of pain in mice[J]. Brain Res, 2007, 1159:124-133.[89] Vinicius M Gadotti, Daiane Tibola, Ana Flavia Paszcuk, et al. Contribution of spinal glutamatergic receptors to the antinociception caused by agmatine in mice[J]. Brain Res, 2006, 1093(1):116-122.[90] Carolyn A Fairbanks, Kristin L Schreiber, Kori L Brewer, et al. Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury[J]. Proc Natl Acad Sci USA, 2000, 97(19):10584-10589.[91] Aytul Onal, Yasemin Delen, Sibel Ulker, et al. Agmatine attenuates neuropathic pain in rats: possible mediation of nitric oxide and noradrenergic activity in the brainstem and cerebellum[J]. Life Sci, 2003, 73(4):413-428.[92] Christine Courteix, Anne-Marie Privat, Teresa Pelissier, et al. Agmatine induces antihyperalgesic effects in diabetic rats and a superadditive interaction with R(-)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid, a N-methyl-D-aspartate-receptor antagonist[J]. J Pharmacol Exp Ther, 2007, 322(3):1237-1245.[93] Hakan C Karadag, Ahmet Ulugol, Melek Tamer, et al. Systemic agmatine attenuates tactile allodynia in two experimental neuropathic pain models in rats[J]. Neurosci Lett, 2003, 339(1):88-90.[94] Francesco Gentili, Claudia Cardinaletti, Antonio Carrieri, et al. Involvement of I2-imidazoline binding sites in positive and negative morphine analgesia modulatory effects[J]. Eur J Pharmacol, 2006, 553(1-3):73-81.[95] Cristal Sampson, Zhang Yan-an, Fabio Del Bello, et al. Effects of imidazoline I2 receptor ligands on acute nociception in rats[J]. Neuroreport, 2012, 23(2):73-77.[96] C M Brown, A C Mackinnon, W S Redfern, et al. RS-45041-190: a selective, high-affinity ligand for I2 imidazoline receptors[J]. Br J Pharmacol, 1995, 116(2):1737-1744.[97] Alvaro Diaz, Soraya Mayet, Anthony H Dickenson. BU-224 produces spinal antinociception as an agonist at imidazoline I2 receptors[J]. Eur J Pharmacol, 1997, 333(1):9-15.[98] Flora Ferrari, Simonetta Fiorentino, Laura Mennuni, et al. Analgesic efficacy of CR4056, a novel imidazoline-2 receptor ligand, in rat models of inflammatory and neuropathic pain[J]. J Pain Res, 2011, 4:111-125.[99] Cristina Meregalli, Cecilia Ceresa, A Canta, et al. CR4056, a new analgesic I2 ligand, is highly effective against bortezomib-induced painful neuropathy in rats[J]. J Pain Res, 2012, 5:151-167.[100] Carolyn A Fairbanks, George L Wilcox. Acute tolerance to spinally administered morphine compares mechanistically with chronically induced morphine tolerance[J]. J Pharmacol Exp Ther, 1997, 282(3):1408-1417.[101] Li Jin, Li Xin, Pei Gang, et al. Effects of agmatine on tolerance to and substance dependence on morphine in mice[J]. Zhongguo Yao Li Xue Bao, 1999, 20(3):232-238.[102] Pilar Sanchez-Blazquez, M Assumpcio Boronat, Gabriel Olmos, et al. Activation of I(2)-imidazoline receptors enhances supraspinal morphine analgesia in mice: a model to detect agonist and antagonist activities at these receptors[J]. Br J Pharmacol, 2000, 130(1):146-152.[103] An Xiao-Fei, Zhang Yan-an, Jerrold C Winter, et al. Effects of imidazoline I(2) receptor agonists and morphine on schedule-controlled responding in rats[J]. Pharmacol Biochem Behav, 2012, 101(3):354-359.[104] A L Hudson, R Gough, R Tyacke, et al. Novel selective compounds for the investigation of imidazoline receptors[J]. Ann N Y Acad Sci, 1999, 881:81-91.[105] M M Aglawe, B G Taksande, S S Kuldhariya, et al. Participation of central imidazoline binding sites in antinociceptive effect of ethanol and nicotine in rats[J]. Fundam Clin Pharmacol, 2013, doi: 10.1111/fcp.12034.[106] Magdalena Sastre, Jesus A Garcia-Sevilla. Densities of I2-imidazoline receptors, alpha 2-adrenoceptors and monoamine oxidase B in brains of suicide victims[J]. Neurochem Int, 1997, 30(1):63-72.[107] J E Piletz, A Halaris, P R Ernsberger. Psychopharmacology of imidazoline and alpha 2-adrenergic receptors: implications for depression[J]. Crit Rev Neurobiol, 1994, 9(1):29-66.[108] Gabriel Olmos, Ane M Gabilondo, Antonio Miralles, et al. Chronic treatment with the monoamine oxidase inhibitors clorgyline and pargyline down-regulates non-adrenoceptor [3H]-idazoxan binding sites in the rat brain[J]. Br J Pharmacol, 1993, 108(3):597-603.[109] Regina Alemany, Gabriel Olmos, Jesus A Garcia-Sevilla. The effects of phenelzine and other monoamine oxidase inhibitor antidepressants on brain and liver I2 imidazoline-preferring receptors[J]. Br J Pharmacol, 1995, 114(4):837-845.[110] A Holt, B Wieland, G B Baker. Allosteric modulation of semicarbazide-sensitive amine oxidase activities in vitro by imidazoline receptor ligands[J]. Br J Pharmacol, 2004, 143(4):495-507.[111] Luisa Ugedo, Joseba Pineda, Raul Martin-Ruiz, et al. Imidazoline-induced inhibition of firing rate of 5-HT neurons in rat dorsal raphe by modulation of extracellular 5-HT levels[J]. Ann N Y Acad Sci, 1999, 881:365-368.[112] Haya Abu Ghazaleh, Maggie D Lalies, Stephen M Husbands, et al. The effect of 1-(4,5-dihydro-1H-imidazol-2-yl) isoquinoline on monoamine release and turnover in the rat frontal cortex[J]. Neurosci Lett, 2007, 422(2):109-113.[113] D P Finn, M D Lalies, M S Harbuz, et al. Imidazoline(2) (I(2)) binding site- and alpha(2)-adrenoceptor-mediated modulation of central noradrenergic and HPA axis function in control rats and chronically stressed rats with adjuvant-induced arthritis[J]. Neuropharmacology, 2002, 42(7):958-965.[114] Angelos Halaris, Zhu He, Feng Yang-zheng, et al. Plasma agmatine and platelet imidazoline receptors in depression[J]. Ann N Y Acad Sci, 1999, 881:445-451.[115] Li Yun-Feng, Gong Zheng-Hua, Cao Jiang-Bei, et al. Antidepressant-like effect of agmatine and its possible mechanism[J]. Eur J Pharmacol, 2003, 469(1-3):81-88.[116] Andrea Dias Elpo Zomkowski, Angelo Oscar Rosa, Jaime Lin, et al. Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming test[J]. Brain Res, 2004, 1023(2):253-263.[117] Maarja Krass, Gregers Wegener, Eero Vasar, et al. Antidepressant-like effect of agmatine is not mediated by serotonin[J]. Behav Brain Res, 2008, 188(2):324-328.[118] Andrea D E Zomkowski, Adair R S Santos, Ana L S Rodrigues. Evidence for the involvement of the opioid system in the agmatine antidepressant-like effect in the forced swimming test[J]. Neurosci Lett, 2005, 381(3):279-283.[119] Jiang Xian-Zhong, Li Yun-Feng, Zhang You-Zhi, et al. [5-HT1A/1B receptors, alpha2-adrenoceptors and the post-receptor adenylate cyclase activation in the mice brain are involved in the antidepressant-like action of agmatine][J]. Yao Xue Xue Bao, 2008, 43(5):467-473.[120] Andrea D E Zomkowski, Luciana Hammes, Jaime Lin, et al. Agmatine produces antidepressant-like effects in two models of depression in mice[J]. Neuroreport, 2002, 13(4):387-391.[121] Mariana P Zeidan, Andrea D E Zomkowski, Angelo O Rosa, et al. Evidence for imidazoline receptors involvement in the agmatine antidepressant-like effect in the forced swimming test[J]. Eur J Pharmacol, 2007, 565(1-3):125-131.[122] Feyza Aricioglu, Hale Altunbas. Is agmatine an endogenous anxiolytic/antidepressant agent?[J]. Ann N Y Acad Sci, 2003, 1009:136-140.[123] Nandkishor R Kotagale, Sunil J Tripathi, Manish M Aglawe, et al. Evidences for the agmatine involvement in antidepressant like effect of bupropion in mouse forced swim test[J]. Pharmacol Biochem Behav, 2013, 107:42-47.[124] Davood Farzin, Nazanin Mansouri. Antidepressant-like effect of harmane and other beta-carbolines in the mouse forced swim test[J]. Eur Neuropsychopharmacol, 2006, 16(5):324-328.[125] David P Finn, Octavi Marti, Michael S Harbuz, et al. Behavioral, neuroendocrine and neurochemical effects of the imidazoline I2 receptor selective ligand BU224 in naive rats and rats exposed to the stress of the forced swim test[J]. Psychopharmacology (Berl), 2003, 167(2):195-202.[126] D J Nutt, N French, S Handley, et al. Functional studies of specific imidazoline-2 receptor ligands[J]. Ann N Y Acad Sci, 1995, 763:125-139.[127] Raquel Tonello, Jardel Gomes Villarinho, Gabriela Da Silva Sant'anna, et al. The potential antidepressant-like effect of imidazoline I2 ligand 2-BFI in mice[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2012, 37(1):15-21.[128] Gad M Gilad, Varda H Gilad. Accelerated functional recovery and neuroprotection by agmatine after spinal cord ischemia in rats[J]. Neurosci Lett, 2000, 296(2-3):97-100.[129] D Uranchimeg, Jae Hwan Kim, Jae Young Kim, et al. Recovered changes in the spleen by agmatine treatment after transient cerebral ischemia[J]. Anat Cell Biol, 2010, 43(1):44-53.[130] Feng Yang, John E Piletz, Michael H Leblanc. Agmatine suppresses nitric oxide production and attenuates hypoxic-ischemic brain injury in neonatal rats[J]. Pediatr Res, 2002, 52(4):606-611.[131] J H Kim, M A Yenari, R G Giffard, et al. Agmatine reduces infarct area in a mouse model of transient focal cerebral ischemia and protects cultured neurons from ischemia-like injury[J]. Exp Neurol, 2004, 189(1):122-130.[132] Feyza Aricioglu, Soundar Regunathan, John E Piletz. Is agmatine an endogenous factor against stress?[J]. Ann N Y Acad Sci, 2003, 1009:127-132.[133] Jinn-Rung Kuo, Chong-Jeh Lo, C C Chio, et al. Resuscitation from experimental traumatic brain injury by agmatine therapy[J]. Resuscitation, 2007, 75(3):506-514.[134] Jinn-Rung Kuo, Chong-Jeh Lo, Chang Ching-Ping, et al. Agmatine-promoted angiogenesis, neurogenesis, and inhibition of gliosis-reduced traumatic brain injury in rats[J]. J Trauma, 2011, 71(4):E87-E93.[135] Wang Che-Chuan, Chung-Ching Chio, Chang Ching-Hong, et al. Beneficial effect of agmatine on brain apoptosis, astrogliosis, and edema after rat transient cerebral ischemia[J]. BMC Pharmacol, 2010, 10:11.[136] Cui Hui-song, Jae-Hoon Lee, Ji-Young Kim, et al. The neuroprotective effect of agmatine after focal cerebral ischemia in diabetic rats[J]. J Neurosurg Anesthesiol, 2012, 24(1):39-50.[137] Ingvar Gustafson, Eva Westerberg, Tadeusz Wieloch. Protection against ischemia-induced neuronal damage by the alpha 2-adrenoceptor antagonist idazoxan: influence of time of administration and possible mechanisms of action[J]. J Cereb Blood Flow Metab, 1990, 10(6):885-894.[138] Daniel Antier, Florence Franconi, Frederic Sannajust. Idazoxan does not prevent but worsens focal hypoxic-ischemic brain damage in neonatal Wistar rats[J]. J Neurosci Res, 1999, 58(5):690-696.[139] S Regunathan, D L Feinstein, D J Reis. Anti-proliferative and anti-inflammatory actions of imidazoline agents. Are imidazoline receptors involved?[J]. Ann N Y Acad Sci, 1999, 881:410-419.[140] M Assumpcio Boronat, Gabriel Olmos, Jesus A Garcia-Sevilla. Attenuation of tolerance to opioid-induced antinociception by idazoxan and other I2-ligands[J]. Ann N Y Acad Sci, 1999, 881:359-363.[141] Han Zhao, Cheng Zhao-Hui, Liu Shuang, et al. Neurovascular protection conferred by 2-BFI treatment during rat cerebral ischemia[J]. Biochem Biophys Res Commun, 2012, 424(3):544-548.[142] Han Zhao, Zhang Hong-Xia, Tian Ji-Sha, et al. 2-(-2-benzofuranyl)-2-imidazoline induces Bcl-2 expression and provides neuroprotection against transient cerebral ischemia in rats[J]. Brain Res, 2010, 1361:86-92.[143] Li Fang, Zhang Zheng-Xue, Liu Yin-Feng, et al. 2-BFI ameliorates EAE-induced mouse spinal cord damage: effective therapeutic time window and possible mechanisms[J]. Brain Res, 2012, 1483:13-19.[144] C Garau, A Miralles, J A Garcia-Sevilla. Chronic treatment with selective I2-imidazoline receptor ligands decreases the content of pro-apoptotic markers in rat brain[J]. J Psychopharmacol, 2013, 27(2):123-134.[145] Su RB, Wei XL, Zheng JQ, et al. Anticonvulsive effect of agmatine in mice[J]. Pharmacol Biochem Behav, 2004, 77(2):345-349.[146] Feyza Aricioglu, Bilge Kan, Okan Yillar, et al. Effect of agmatine on electrically and chemically induced seizures in mice[J]. Ann N Y Acad Sci, 2003, 1009:141-146.[147] Jarogniew J Luszczki, Remigiusz Czernecki, Katarzyna Wojtal, et al. Agmatine enhances the anticonvulsant action of phenobarbital and valproate in the mouse maximal electroshock seizure model[J]. J Neural Transm, 2008, 115(11):1485-1494.[148] Carriee L Wade, Daniel J Schuster, Kristine M Domingo, et al. Supraspinally-administered agmatine attenuates the development of oral fentanyl self-administration[J]. Eur J Pharmacol, 2008, 587(1-3):135-140.[149] Wei Xiao-Li, Su Rui-Bin, Wu Ning, et al. Agmatine inhibits morphine-induced locomotion sensitization and morphine-induced changes in striatal dopamine and metabolites in rats[J]. Eur Neuropsychopharmacol, 2007, 17(12):790-799.[150] Wei Xiao-Li, Su Rui-Bin, Lu Xin-Qiang, et al. Inhibition by agmatine on morphine-induced conditioned place preference in rats[J]. Eur J Pharmacol, 2005, 515(1-3):99-106.[151] Brijesh G Taksande, Nandkishor R Kotagale, Mital R Patel, et al. Agmatine, an endogenous imidazoline receptor ligand modulates ethanol anxiolysis and withdrawal anxiety in rats[J]. Eur J Pharmacol, 2010, 637(1-3):89-101.[152] Onder Ozden, Hakan Kayir, Yusuf Ozturk, et al. Agmatine blocks ethanol-induced locomotor hyperactivity in male mice[J]. Eur J Pharmacol, 2011, 659(1):26-29 .[153] Scott M Rawls, Ronald J Tallarida, Jacob Zisk. Agmatine and a cannabinoid agonist, WIN 55212-2, interact to produce a hypothermic synergy[J]. Eur J Pharmacol, 2006, 553(1-3):89-98.[154] T Uzbay, H Kayir, G Goktalay, et al. Agmatine disrupts prepulse inhibition of acoustic startle reflex in rats[J]. J Psychopharmacol, 2010, 24(6):923-929.[155] Gavin P Reynolds, Ruth M Boulton, Sally J Pearson, et al. Imidazoline binding sites in Huntington's and Parkinson's disease putamen[J]. Eur J Pharmacol, 1996, 301(1-3):R19-21.[156] David A Thorn, An Xiao-Fei, Zhang Yan-an, et al. Characterization of the hypothermic effects of imidazoline I(2) receptor agonists in rats[J]. Br J Pharmacol, 2012, 166(6):1936-1945. |
[1] | 孙毅,谭博,苏瑞斌. 偏向性配体——阿片类镇痛药设计新思路[J]. 神经药理学报, 2018, 8(2): 1-7. |
[2] | 赵洁,张琦,王旭,华茜,张子剑. 核酸适体技术在生物医学研究中的应用[J]. 神经药理学报, 2014, 4(6): 44-54. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||