[1] Arijit Bhowmik, Rajni Khan, Mrinal K Ghosh. Blood brain barrier: a challenge for effectual therapy of brain tumors[J]. Biomed Res Int, 2015, (2015):320-941.[2] Inmaculada Posadas, Silvia Monteagudo, Valentin Cena. Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis[J]. Nanomed, 2016, 11(2016):833–849.[3] D Elias, F Blot, A El Otmany, et al. Curative treatment of peritoneal carcinomatosis arising from colorectal cancer by complete resection and intraperitoneal chemotherapy[J]. Cancer, 2001, 92(1):71–76.[4] William M Pardridge. Drug and gene targeting to the brain via blood–brain barrier receptor-mediated transport systems[J]. Int Congr Ser, 1277(2005):49–62.[5] David Maussang, Jaap Rip, Joan van Kregten, et al. Glutathione conjugation dose-dependently increases brain-specific liposomal drug delivery in vitro and in vivo[J]. Drug Discov Today Technol, 2016, 20:59–69.[6] N Joan Abbott, Adjanie A K Patabendige, Diana E M Dolman, et al. Structure and function of the blood-brain barrier[J]. Neurobiol Dis, 37(2010):13–25.[7] Mayur M Patel, Bhoomika M Patel. Crossing the blood-brain barrier: recent advances in drug delivery to the brain[J]. CNS Drugs, 31(2017):109–133.[8] Renu Singh Dhanikula, Anteneh Argaw, Jean-Francois Bouchard, et al. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability[J]. Mol Pharm, 2008, 5(1):105–116.[9] Yan Chen, Li-hong Liu. Modern methods for delivery of drugs across the blood-brain barrier[J]. Adv Drug Deliv Rev, 2012, 64(7):640–665.[10] Tetsuya Terasaki, Akira Tsuji. Drug delivery to the brain utilizing blood-brain barrier transport systems[J]. J Control Release, 1994, 29(1-2):163–169.[11] Hui-le Gao. Progress and perspectives on targeting nanoparticles for brain drug delivery[J]. Acta Pharm Sin, 2016, 6(4):268–286.[12] Mikko Gynther, Jarmo Ropponen, Krista Laine, et al. Glucose promoiety enables glucose transporter mediated brain uptake of ketoprofen and indomethacin prodrugs in rats[J]. J Med Chem, 2009, 52(10):3348–3353.[13] Maria Joao Gomes, Barbara Mendes, Susana Martins, et al. Nanoparticle functionalization for brain targeting drug delivery and diagnostic[J]. Handbook of Nanoparticles, 2016:941-959.[14] Hammarlund-Udenaes, Margareta, de Lange, Elizabeth, Thorne, et al. Drug delivery to the brain–physiological concepts, methodologies and approaches[M]. Springer: New York, 2014: 433–454.[15] Amit Alexander, Ajazuddin, Ravish J Patel, et al. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives[J]. J. Control.Release, 2016, 241:110–124.[16] Amit Alexander, Ajazuddin, Junaid Khan, et al. Polyethylene glycol (PEG)-poly (N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications[J]. Eur J Pharm Biopharm, 2014, 88(3):575–585.[17] Amit Alexander, Ajazuddin, Junaid Khan, et al. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications[J]. J Control Release, 2013, 172(3):715–729.[18] S Sahu, S Saraf, C D Kaur, et al. Biocompatible nanoparticles for sustained topical delivery of anticancer phytoconstituent quercetin[J]. Pak J Biol Sci, 2013, 16(13):601–609.[19] Ajazuddin Ajazuddin, Amit Alexander, Junaid Khan, et al.Advancement in stimuli triggered in situ gelling delivery for local and systemicroute[J]. Expert Opin Drug Deliv, 2012, 9(12):1573–1592.[20] Amit Alexander, Shubhangi Dwivedi, Ajazuddin, et al. Tripathi, Approaches for breaking the barriers of drug permeation through transdermal drug delivery[J].J Control Release, 2012, 164(1):26–40.[21] Amber Vyas, Shailendra Saraf, Swarnlata Saraf. Encapsulation of cyclodextrin complexed simvastatin in chitosan nanocarriers: a novel technique for oral delivery[J]. J Incl Phenom Macrocycl Chem, 2010, 66(3-4):251–259.[22] K Dashora, Swarnlata Saraf. In vitro studies of tizanidine controlled-releasemicrocapsular matrices[J]. Pak J Pharm Sci, 2006, 19(3):177–181.[23] R Gabathuler. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases[J]. Neurobiol Dis, 2010, 37(1):48–57.[24] Torben Moos, Evan H Morgan. Transferrin and transferrin receptor function in brain barrier systems[J]. Cell Mol Neurobiol, 2000, 20(1):77–95.[25] J B Fishman, J B Rubin, J V Handrahan, et al. Receptormediated transcytosis of transferrin across the blood-brain barrier[J]. J Neurosci Res, 18(2):299–304.[26] Chen Zhi-lan, Huang Man, Wang Xia-rong, et al. Transferrin-modified liposome promotes alpha-mangostin to penetrate the bloodbrain barrier[J]. Nanomedicine, 2016, 12(2):421–430.[27] 赵超越, 张云杰, 姜晓艺, 等. 乳铁蛋白作为靶向功能分子的研究进展[J]. 中国生化药物杂志, 2014, 34(09): 181-184.[28] Y A Suzuki, V Lopez, B Lonnerdal. Mammalian lactoferrin receptors: structure and function[J]. Cell Mol Life Sci, 2005, 62:2560–2575.[29] Hu Kai-li, Shi Yan-bin, Jiang Wen-ming, et al. Lactoferrin conjugated PEG-PLGA nanoparticles for brain delivery: Preparation,characterization and efficacy in Parkinson's disease[J]. Int J Pharm,2011,415( 1 /2) : 273-283.[30] 冯亮. 乳铁蛋白修饰聚合物泡囊对脑胶质瘤的递药特性研究[D]. 上海: 复旦大学药学院,2010.[31] Jean E Vance, Hideki Hayashi. Formation and function of apolipoprotein E-containing lipoproteins in the nervous system[J]. Biochim Biophys Acta, 2010, 1801(8):806–818.[32] AG De Boer, P J Gaillard. Drug targeting to the brain[J]. Annu Rev Pharmacol Toxicol, 2007, 47:323–355.[33] Benedicte Dehouck, Laurence Fenart, Marie-Pierre Dehouck, et al. A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier[J]. J Cell Biol, 1997, 138(4):877–889.[34] K Michaelis, M M Hoffmann, S Dreis, et al. Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain[J]. J Pharmacol Exp Ther, 2006, 317(3):1246–1253.[35] Reinhard Gabathuler. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases[J]. Neurobiol Dis, 2010, 37(1):48–57.[36] Anja Zensi, David Begley, Charles Pontikis, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurons[J]. J Controlled Release, 2009, 137(1):78-86.[37] 秦晶. RGD介导脑靶向阿魏酸脂质体的研究[D].沈阳: 沈阳药科大学,2007.[38] Pieter J Gaillard, Chantal C M Appeldoorn, Jaap Rip, et al. Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation[J]. J Control Release, 2012, 164(3):364–369.[39] Huang Feng-yun, Chen Wan-jou, Lee Wan-yu, et al. In vitro and in vivoevaluation of lactoferrin-conjugated liposomes as a novel carrier to improve the brain delivery[J].Int J Mol Sci, 2013,14:2862-2874.[40] Cheng Gong, Li Xiang-ning, Xu Ling-ling, et al. Target delivery of a gene into the brain using the RVG29-oligoarginine peptide[J]. Biomaterials, 2012, 33(12): 3456-3463.[41] 况其方, 冉瑞, 刘亚圆, 等. RVG_(29)修饰脂质体对脑胶质瘤靶向性的初步研究[J].华西药学杂志, 2015, 30(01): 15-17.[42] 金莹莹, 张家文. Angiopep-2修饰的纳米递药系统和纳米成像系统在胶质瘤诊疗中的应用[J].中国医学计算机成像杂志, 2015, 21(05): 413-418.[43] 熊志勇, 王旋, 张志平, 等. Angiopep-2修饰纳米颗粒穿越血脑脊液屏障的能力[J].华中科技大学学报:医学版, 2014, 43(03): 304-306+310. [44] Mathew W Smith, Ghaith Al-Jayyoussi, Mark Gumbleton. Peptide sequences mediating tropism to intact blood-brain barrier: an in vivobiodistribution study using phage display[J]. Peptides, 2012, 38(1): 172−180.[45] Nicole Ullrich, Harald Sontheimer. Human astrocytoma cells express a unique chloride current[J]. Neuroreport, 1996, 7(5):1020-1024.[46] Nicole J Ullrich, Harald Sontheimer. Biophysical and pharmacological characterization of chloride currents in human astrocyloma cells[J].Am J Physiol, 1996, 270(5pt1):C1511-C1521.[47] Jessy Deshane, Craig C Garner, Harald Sontheimer. Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2[J].Biol Chem, 2003, 278(6):4135-4144.[48] Pieter J Gaillard, Arjen Brink, Albertus G de Boer. Diphtheria toxin receptor-targeted brain drug delivery[J]. Int Cong Series, 2005, 1277(1):185-198.[49] 刘洋, 蒋晨. 纳米药物递释系统的脑靶向研究进展[J]. 药学学报,2013, 48(10):1532-1543.[50] Mu Chao-feng, Nimita Dave, Hu Jing, et al. Solubilization of flurbiprofen into aptamer-modified PEG-PLA micelles for targeted delivery to brain-derived endothelial cells in vitro[J]. J Microencapsul, 2013, doi.org/10.3109/02652048.2013.778907.[51] Sonu Bhaskar, Furong Tian, Tobias Stoeger, et al. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood–brain barrier: perspectives on tracking and neuroimaging[J].Part Fibre Toxicol, 2010, 7:3.[52] Azam Bolhassani. Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer[J]. Biochim Biophys Acta, 2011, 1816(2): 232–246.[53] Liu Li-hong, Guo Kun, Lu Jia, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG–TAT for drug delivery across the blood–brain barrier[J]. Biomaterials, 2008, 29(10):1509–1517.[54] Fawell S, Seery J, Daikh Y, et al. Tat-mediated delivery of heterologous proteins into cells [J]. Proc Natl Acad Sci USA, 1994, 91(2): 664−668.[55] Melissa J Simon, Woo Hyeun Kang, Gao Shan, et al. Increased delivery of TAT across an endothelial monolayer following ischemic injury [J]. Neurosci Lett, 2010, 486(1): 1−4.[56] Filipa L Cardoso, Dora Brites, Maria A Brito. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches[J]. Brain Res Rev, 2010, 64(2):328–363.[57] David J Begley, Milton W Brightman. Structural and functional aspects of the blood-brain barrier, Progress in Drug Research, Fortschritte Der Arzneimittelforschung[J]. Progres Des Recherches Pharmaceutiques, 2003, 61: 39–78.[58] Xie Fu-lan, Yao Nian, Qin Yao, et al. Investigation of glucose-modified liposomes using polyethylene glycols with different chain lengths as the linkers for brain targeting[J]. Int J Nanomedicine, 2012, 7:163–175.[59] Luis J Cruz, Paul J Tacken, Remco Fokkink, et al. The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells[J]. Biomaterials, 2011, 32(28):6791–6803. [60] 董秀秀, 杨春荣, 平洋, 等. 纳米载药系统脑靶向策略研究进展[J]. 广东化工, 2017, 44(07): 142-143.[61] 韩立杰, 郭炜, 刘伟, 等. 透明质酸修饰载紫杉醇靶向脂质体抑制脑肿瘤干细胞的初步评价[J]. 中国医院药学杂志, 2015, 35(09): 773-776.[62] 何媛, 张雅溶, 李秋霞, 等. 透明质酸修饰姜黄素壳聚糖纳米粒的制备及初步细胞毒性考察[J]. 中国医药工业杂志, 2015, 46(02): 162-167.[63] 赵子明, 戚大石, 韩瑾, 等. 乳铁蛋白修饰的壳聚糖磁性纳米粒的制备、表征及海马神经细胞摄取[J]. 中南药学, 2014, 12(12): 1175-1178.[64] Sudheesh Pilakka-Kanthikeel, Venkata Subba Rao Atluri, Vidya Sagar, et al. Targeted brain derived neurotrophic factors(BDNF)delivery across the bloodbrain barrier for neuro-protection using magnetic nano carriers:an in-vitro study[J]. PLoS One, 2013, 8(4):e62241.[65] Lu Wei. Adsorptive-mediated brain delivery systems [J]. Curr Pharm Biotechnol, 2012, 13: 2340−2348.[66] Shailendra Joshi, Rajinder P Singh-Moon, Jason A Ellis, et al. Cerebral hypoperfusion-assisted intraarterial deposition of liposomes in normal and glioma-bearing rats[J]. Neurosurgery, 2015, 76(1):92–100.[67] Shailendra Joshi, Rajinder Singh-Moon, Mei Wang, et al. Cationic surface charge enhances early regional deposition of liposomes after intracarotid injection[J]. J Neuro-Oncol, 2014, 120(3):489–497.[68] Shailendra Joshi, Rajinder P Singh-Moon, Mei Wang, et al. Transient cerebral hypoperfusion assisted intraarterial cationic liposome delivery to brain tissue[J]. J Neuro-Oncol, 2014, 118(1):73–82.[69] 马宝花, 杨海, 刘雪丽, 等. 壳聚糖修饰的托氟啶固体脂质纳米粒的制备[J]. 中国药师, 2015, 18(12):2050-2053.[70] 马宝花. 壳聚糖修饰TFu固体脂质纳米粒的初步研究[D].济南:山东大学, 2009.[71] 黄雷鸣, 赵锦花, 王国成, 等. 聚合物辅料对P-糖蛋白抑制机制的研究进展[J].药学学报, 2010, 45(10): 1224-1231.[72] 莫然, 肖衍宇, 平其能. 药物制剂技术在抑制P-糖蛋白外排作用中的应用研究近况[J].药学进展, 2009, 33(10): 446-451.[73] Rupa D Dabholkar, Rishikesh M Sawant, Dimitriy A Mongayt, et al. Polyethylene glycol-phosphatidylethanolamine conjugate (PEGPE)- based mixed micelles: Some properties, loading with paclitaxel, and modulation of P- glycoprotein - mediated efflux[J]. Int J Pharm, 2006, 315(1/2):148-157.[74] Elena V Batrakova, Li Shu, Sergey V Vinogradov, et al. Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: contributions of energy depletion and membrane fluidization [J]. J Pharmacol Exp Ther, 2001, 299(2): 483−493.[75] Sonu Bhaskar, Furong Tian, Tobias Stoeger, et al. Multifunctional nanocarriers for diagnostics, drug delivery and targeted treatment across blood–brain barrier: perspectives on tracking and neuroimaging[J].Part Fibre Toxicol, 2010, 7:3.[76] 杨媛, 娄琨, 梅兴国, 等. 受体介导的脑靶向药物递送系统研究进展[J]. 中国药学杂志, 2009, 44(23): 1761-1764.[77] Z.L. Chen, M. Huang, X.R. Wang, et al.Transferrin-modified liposome promotes alpha-mangostin to penetrate the bloodbrain barrier[J]. Nanomedicine 12 (2016) 421–430.与26重复[78] Lucienne Juillerat-Jeanneret. The targeted delivery of cancer drugs across the blood–brain barrier:chemical modifications of drugs or drug-nanoparticles?[J]. Drug Discov Today, 2008, 13(23–24):1099–1106.[79] Ishii T, Asai T, Oyama D, et al. Treatment of cerebral ischemia-reperfusion injury with PEGylated liposomes encapsulating FK506 [J].FASEB J, 2012, 27(4):1362-1370.[80] Gaillard PJ, Appeldoorn CC, Rip J, et al. Enhanced brain delivery of liposomal methylprednisolone improved therapeutic efficacy in a model of neuroinflammation[J].J Control Release,2012,164:364-369.与38重复[81] Michele Garaglia, Livio Luongo, Giuseppina Salzano, et al. Stealth liposomes encapsulating zoledronic Acid: a new opportunity to treat neuropathic pain [J].Mol Pharm, 2013,10(3):1111-1118. |