[1] Stephen F Traynelis, Lonnie P Wollmuth, Chris J McBain, et al. Glutamate receptor ion channels: structure, regulation, and function[J]. Pharmacol Rev, 2010, 62(3):405-496.[2] Elva Diaz. Regulation of AMPA receptors by transmembrane accessory proteins[J]. Eur J Neurosci, 2010, 32(2):261-268.[3] Alexander C Jackson, Roger A Nicoll. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits[J]. Neuron, 2011, 70(2):178-199.[4] Ziff E B. TARPs and the AMPA receptor trafficking paradox[J]. Neuron, 2007, 53(5):627-633.[5] von Engelhardt J, Mack V, Sprengel R, et al. CKAMP44: a brain-specific protein attenuating short-term synaptic plasticity in the dentate gyrus[J]. Science, 2010, 327(5972):1518-1522.[6] Jochen Schwenk, Nadine Harmel, Gerd Zolles, et al. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors[J]. Science, 2009, 323(5919):1313-1319.[7] Natalie F Shanks, Jeffrey N Savas, Tomohiko Maruo T, et al. Differences in AMPA and kainate receptor interactomes facilitate identification of AMPA receptor auxiliary subunit GSG1L[J]. Cell Rep, 2012, 1(6):590-598.[8] Zhang Wei, Fannie St-Gelais, Chad P Grabner, et al. A transmembrane accessory subunit that modulates kainate-type glutamate receptors[J]. Neuron, 2009, 61(3):385-396.[9] Anders S Kristensen, Matthew T Geballe, James P Snyder, et al. Glutamate receptors: variation in structure-function coupling[J]. Trends Pharmacol Sci, 2006, 27(2):65-69.[10] Andrew C Penn, Ingo H Greger. Sculpting AMPA receptor formation and function by alternative RNA processing[J]. RNA Biol, 2009, 6(5):517-521.[11] Chen L, Chetkovich D M, Petralia R S, et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms[J]. Nature, 2000, 408(6815):936-943.[12] Eric Schnell, Max Sizemore, Siavash Karimzadegan, et al. Direct interactions between PSD-95 and stargazin control synaptic AMPA receptor number[J]. Proc Natl Acad Sci USA, 2002, 99(21):13902-13907.[13] Cecile Bats, Laurent Groc, Daniel Choquet. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking[J]. Neuron, 2007, 53(5):719-734.[14] Chen L, Bao S, Qiao X, et al. Impaired cerebellar synapse maturation in waggler, a mutant mouse with a disrupted neuronal calcium channel gamma subunit[J]. Proc Natl Acad Sci USA, 1999, 96(21):12132-12137.[15] Kouichi Hashimoto, Masahiro Fukaya, Qiao Xiao-xi, et al. Impairment of AMPA receptor function in cerebellar granule cells of ataxic mutant mouse stargazer[J]. J Neurosci, 1999, 19(14):6027-6036.[16] Susumu Tomita, Hillel Adesnik, Masayuki Sekiguchi, et al. Stargazin modulates AMPA receptor gating and trafficking by distinct domains[J]. Nature, 2005, 435(7045):1052-1058.[17] Fraser J Moss, Patricia Viard, Anthony Davies, et al. The novel product of a five-exon stargazin-related gene abolishes Ca(V)2.2 calcium channel expression[J]. EMBO J, 2002, 21(7):1514-1523.[18] Susumu Tomita, Chen Lu, Yoshimi Kawasaki, et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins[J]. J Cell Biol, 2003, 161(4):805-816.[19] Wim Vandenberghe, Roger A Nicoll, David S Bredt DS. Stargazin is an AMPA receptor auxiliary subunit[J]. Proc Natl Acad Sci USA, 2005, 102(2):485-490.[20] Terunaga Nakagawa, Cheng Yi-fan, Elizabeth Ramm, et al. Structure and different conformational states of native AMPA receptor complexes[J]. Nature, 2005, 433(7025):545-549.[21] Akihiko S Kato, Zhou Wei, Aaron D Milstein, et al. New transmembrane AMPA receptor regulatory protein isoform, gamma-7, differentially regulates AMPA receptors[J]. J Neurosci, 2007, 27(18):4969-4977.[22] Akihiko S Kato, Martin B Gill, Michelle T Ho, et al. Hippocampal AMPA receptor gating controlled by both TARP and cornichon proteins[J]. Neuron, 2010, 68(6):1082-1096.[23] Akihiko S Kato, Martin B Gill, Yu Hong, et al. TARPs differentially decorate AMPA receptors to specify neuropharmacology[J]. Trends Neurosci, 2010, 33(5):241-248.[24] Cho Chang-Hoon, Fannie St-Gelais, Zhang Wei, et al. Two families of TARP isoforms that have distinct effects on the kinetic properties of AMPA receptors and synaptic currents[J]. Neuron, 2007, 55(6):890-904.[25] Susumu Tomita, Valentin Stein, Tim J Stocker, et al. Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs[J]. Neuron, 2005, 45(2):269-277.[26] Charlotte Sager, Jan Terhag, Sabine Kott, et al. C-terminal domains of transmembrane alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor regulatory proteins not only facilitate trafficking but are major modulators of AMPA receptor function[J]. J Biol Chem, 2009, 284(47):32413-32424.[27] Karen Menuz, Robert Stroud, Roger A Nicoll, et al. TARP auxiliary subunits switch AMPA receptor antagonists into partial agonists[J]. Science, 2007, 318(5851):815-817.[28] Susumu Tomita, Masayuki Sekiguchi, Keiji Wada, et al. Stargazin controls the pharmacology of AMPA receptor potentiators[J]. Proc Natl Acad Sci USA, 2006, 103(26):10064-10067.[29] Kyle E Montgomery, Markus Kessler, Amy C Arai. Modulation of agonist binding to AMPA receptors by 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine (CX546): differential effects across brain regions and GluA1-4/transmembrane AMPA receptor regulatory protein combinations[J]. J Pharmacol Exp Ther, 2009, 331(3):965-974.[30] David Soto, Ian D Coombs, Leah Kelly, et al. Stargazin attenuates intracellular polyamine block of calcium-permeable AMPA receptors[J]. Nat Neurosci, 2007, 10(10):1260-1267.[31] David Soto, Ian D Coombs, Massimiliano Renzi, et al. Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, gamma-5[J]. Nat Neurosci, 2009, 12(3):277-285.[32] Soto D, Coombs I D, Gratacos-Batlle E, et al. Molecular mechanisms contributing to TARP regulation of channel conductance and polyamine block of calcium-permeable AMPA receptors[J]. J Neurosci, 2014, 34(35):11673-11683.[33] Natalie F Shanks, Ondrej Cais, Tomohiko Maruo, et al. Molecular dissection of the interaction between the AMPA receptor and cornichon homolog-3[J]. J Neurosci, 2014, 34(36):12104-12120.[34] Bruce E Herring, Shi Yun, Young Ho Suh, et al. Cornichon proteins determine the subunit composition of synaptic AMPA receptors[J]. Neuron, 2013, 77(6):1083-1096.[35] Konstantin Khodosevich, Eric Jacobi, Paul Farrow, et al. Coexpressed auxiliary subunits exhibit distinct modulatory profiles on AMPA receptor function[J]. Neuron, 2014, 83(3):601-615.[36] Zhang Wei, Suma Priya Devi, Susumu Tomita, et al. Auxiliary proteins promote modal gating of AMPA- and kainate-type glutamate receptors[J]. Eur J Neurosci, 2014, 39(7):1138-1147.[37] Christoph Straub, David L Hunt, Miwako Yamasaki, et al. Distinct functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1[J]. Nat Neurosci, 2011, 14(7):866-873.[38] Ng D, Pitcher G M, Szilard R K, et al. Neto1 is a novel CUB-domain NMDA receptor-interacting protein required for synaptic plasticity and learning[J]. PLoS Biol, 2009, 7(2):e41.[39] Sarah L Cousins, Neal Innocent, F Anne Stephenson. Neto1 associates with the NMDA receptor/amyloid precursor protein complex[J]. J Neurochem, 2013, 126(5):554-564. |