[1] Eric A Bleeker, Wim H de Jong, Robert Geertsma, et al. Considerations on the EU de?nition of a nanomaterial: science to support policy making[J]. Regul Toxicol Pharmacol, 2013, 65(1): 119-125.[2] Daniel Bobo, Kye J Robinson, Jiaul Islam, et al. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date[J]. Pharm Res, 2016, 33(10): 2373-2387.[3] Andreas Wicki, Dominik Witzigmann, Vimalkumar Balasubramanian, et al. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications[J]. J Contro Release, 2015, 200: 138-157.[4] Wu Xue-ping, Wang Chi. Advances in peptide-modified liposome targeted drug delivery system[J]. Chin J Mod Appl Pharm, 2010, 27(8): 681-685.[5] Rashmi Prabhu, Vandana B Patravale, Medha D Joshi. Polymeric nanoparticles for targeted treatment in oncology: current insights[J]. Int J Nanomedicine, 2015, 2015(10): 1001-1018.[6] Hossein Danafar, Soodabeh Davaran, Kobra Rostamizadeh, et al. Biodegradable m-PEG/PCL core-shell micelles: preparation and characterization as a sustained release formulation for curcumin[J]. Adv Pharm Bull, 2014, 4(2): 501-10.[7] Dong Xia, Wei Chang, Lu Li, et al. Fluorescent nanogel based on four-arm PEG-PCL copolymer with porphyrin core for bioimaging[J]. Mater Sci Eng C Mater Biol Appl, 2016, 61:214-9.[8] Zhou Jun-li, Ni Rong, Chau Ying. Polymeric vesicle formation via temperature-assisted nanoprecipitation[J]. RSC Advances, 2017, 7(29): 17997-18000.[9] A Al Samadab, Bethrya A, Koziolovác E, et al. PCL-PEG graft copolymers with tunable amphiphilicity as efficient drug delivery systems[J]. J Mater Chem B, 2016, 4(37): 6228-6239.[10] Yuichi Ohya, Shinya Takeda, Yosuke Shibata, et al. Evaluation of polyanion-coated biodegradable polymeric micelles as drug delivery vehicles[J]. J Control Release, 2011, 155(1): 104-110.[11] Xin Hong-liang, Jiang Xin-yi, Gu Ji-jin, et al. Angiopep-conjugated poly(ethyleneglycol)- co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma[J]. Biomaterials, 2011, 32(18): 4293-4305.[12] Xin Hong-liang, Sha Xian-yi, Jiang Xin-yi, et al. Anti-glioblastoma e?cacy and safety of paclitaxel-loading angiopep-conjugated dual targeting PEG-PCL nanoparticles[J]. Biomaterials, 2012, 33(32): 8167-8176. [13] Huang Rong-qin, Ke Wei-lun, Liu Yang, et al. The use of lactoferrin as a ligand for targeting the polyamidoamine-based gene delivery system to the brain[J]. Biomaterials, 2008, 29(2): 238-246.[14] Dominique Legrand, Annick Pierce, Elisabeth Elass, et al. Lactoferrin structure and functions[J]. Adv Exp Med Biol, 2008, 606: 163-194.[15] Liu Zhong-yang, Jiang Meng-yin, Kang Ting, et al. Lactoferrin-modi?ed PEG-co-PCL nanoparticles for enhanced brain delivery of NAP peptide following intranasal administration [J]. Biomaterials, 2013, 34(15): 3870-3881.[16] Takanori Kanazawa, Ken Sugawara, Ko Tanaka, et al. Suppression of tumor growth by systemic delivery of anti-VEGF siRNA with cell-penetrating peptide-modified MPEG-PCL nanomicelles[J]. Eur J Pharm Biopharm, 2012, 81(3): 470-477.[17] Ko Tanaka, Takanori Kanazawa, Yasunori Shibata, et al. Development of cell-penetrating peptide-modified MPEG-PCL diblock copolymeric nanoparticles for systemic gene delivery[J]. Int J Pharm, 2010, 396(1-2): 229-238.[18] Ko Tanaka, Takanori Kanazawa, Shogo Horiuchi, et al. Cytoplasm-responsive nanocarriers conjugated with a functional cell-penetrating peptide for systemic siRNA delivery[J]. Int J Pharm, 2013, 455(1-2): 40-47.[19] Amitava Mitra, Justin Mulholland, Anjan Nan, et al. Targeting tumor angiogenic vasculature using polymer-RGD conjugates[J]. J Control Release, 2005, 102(1): 191-201.[20] Yang Jian-hong, Hou Yan-hui, Ji Gang-jian, et al. Targeted delivery of the RGD-labeled biodegradable polymersomes loaded with the hydrophilic drug oxymatrine on cultured hepatic stellate cells and liver fibrosis in rats[J]. Eur J Pharm Sci, 2014, 52: 180-190.[21] Zhu Ya-yin, Zhang Jian, Meng Feng-hua, et al. cRGD-functionalized reduction-sensitive shell-sheddable biodegradable micelles mediate enhanced doxorubicin delivery to human glioma xenografts in vivo[J]. J Control Release, 2016, 233: 29-38. [22] Alyssa M Master, Qi Yi-zhi, Nancy L Oleinick, et al. EGFR-mediated intracellular delivery of Pc 4 nanoformulation for targeted photodynamic therapy of cancer: in vitro studies[J]. Nanomedicine, 2012, 8(5): 655-664. [23] Master A M, Livingston M, Oleinick N L, et al. Optimization of a nanomedicine -based silicon phthalocyanine 4 photodynamic therapy (Pc 4-PDT) strategy for targeted treatment of EGFR-overexpressing cancers[J]. Mol Pharm, 2012, 9(8): 2331-2338.[24] Yao Xing-lei, Yasuo Yoshioka, Ruan Gui-xin, et al. Optimization and internalization mechanisms of PEGylated adenovirus vector with targeting peptide for cancer gene therapy[J]. Biomacromolecules, 2012, 13(8): 2402-2409.[25] Hu Quan-yin, Gao Xiao-ling, Kang Ting, et al. CGKRK-modi?ed nanoparticles for dual-targeting drug delivery to tumor cells and angiogenic blood vessels[J]. Biomaterials, 2013, 34(37): 9496-9508.[26] Jacqueline Trotter, Khalad Karram, Akiko Nishiyama. NG2 cells: properties, progeny and origin[J]. Brain Res Rev, 2010, 63(1-2): 72-82.[27] Jacqueline Trotter. NG2-positive cells in CNS function and the pathological role of antibodies against NG2 in demyelinating diseases[J]. J Neurol Sci, 2005, 233(1-2): 37-42. [28] Chi Yong-bin, Zhu Shan-shan, Wang Chao, et al. Glioma homing peptide-modified PEG-PCL nanoparticles for enhanced anti-glioma therapy[J]. J Drug Target, 2016, 24(3): 224-232.[29] Mishima K, Tsukikawa H, Miura I, et al. Ameliorative effect of NC-1900, a new AVP4-9 analog, through vasopressin V1A receptor on scopolamine-induced impairments of spatial memory in the eight-arm radial maze[J]. Neuropharmacology, 2003, 44(4): 541-552.[30] Tomoko Tanaka, Kiyofumi Yamada, Kouji Senzaki, et al. NC-1900, an active fragment analog of arginine vasopressin, improves learning and memory de?cits induced by b-amyloid protein in rats[J]. Eur J Pharmacol, 1998, 352(2-3): 135-142.[31] Pang Zhi-qing, Lu Wei, Gao Hui-le, et al. Preparation and brain delivery property of biodegradable polymersomes conjugated with OX26[J]. J Control Release, 2008, 128(2): 120-127. [32] Zou Tao, Fatimata Dembele, Anne Beugnet, et al. Nanobody-functionalized PEG-b-PCL polymersomes and their targeting study[J]. J Biotechnol, 2015, 214: 147-155.[33] Philip Grossen, Gabriela Québatte, Dominik Witzigmann, et al. Functionalized solid-sphere PEG-b-PCL nanoparticles to target brain capillary endothelial cells in vitro[J]. J Nanomater, 2016, 2016: 1-13. [34] Awesh Kumar Yadav, Pradeep Mishra, Sanyog Jain, et al. Preparation and characterization of HA-PEG-PCL intelligent core-corona nanoparticles for delivery of doxorubicin[J]. J Drug Target, 2008, 16(6): 464-478. [35] Yang Rui, Meng Feng-hua, Ma Shou-bao, et al. Galactose-decorated crosslinked biodegradable poly(ethylene glycol)-b-poly(ε-caprolactone) block copolymer micelles for enhanced hepatoma-targeting delivery of paclitaxel[J]. Biomacromolecules, 2011, 12 (8): 3047-3055.[36] Tai Wan-yi, Ravi S Shukla, Qin Bin, et al. Development of a peptide-drug conjugate for prostate cancer therapy[J]. Mol Pharm, 2011, 8(3): 901-912.[37] Alcides Chaux, John Eifler, Sarah Karram, et al. Focal positive prostate-specific membrane antigen (PSMA) expression in ganglionic tissues associated with prostate neurovascular bundle: Implications for novel intraoperative PSMA-based fluorescent imaging techniques[J]. Urol Oncol, 2011, 31(5): 572-575.[38] Kristina W Thiel, Paloma H Giangrande. Intracellular delivery of RNA-based therapeutics using aptamers[J]. Ther Deliv, 2010, 1(6):849-861.[39] Zhao Yun-qi, Duan Shao-feng, Zeng Xing, et al. Prodrug strategy for PSMA-targeted delivery of TGX-221 to prostate cancer cells[J]. Mol Pharm, 2012, 9(6): 1705-1716. [40] Teng Yun, Allicia C Girvan, Lavona K Casson, et al. AS1411 alters the localization of a complex containing protein arginine methyl-transferase 5 and nucleolin[J]. Cancer Res, 2007, 67(21): 10491-10500.[41] Li Jing-wei, Feng Liang, Fan Li, et al. Targeting the brain with PEG-PLGA nanoparticles modified with phage-displayed peptides[J]. Biomaterials, 2011, 32(21): 4943-4950.[42] Gao Hui-le, Qian Jun, Cao Shi-jie, et al. Precise glioma targeting of and penetration by aptamer and peptide dual-functioned nanoparticles[J]. Biomaterials, 2012, 33(20): 5115-5123. [43] Shefali Sabharanjak, Satyajit Mayor. Folate receptor endocytosis and trafficking[J]. Adv Drug Deliv Rev, 2004, 56(8): 1099-1109.[44] Chrystalleni Lazarou, Margarita Kapsou. The role of folic acid in prevention and treatment of depression: an overiew of existing evidence and implications for practice[J]. Complement Ther Clin Pract, 2010, 16(3): 161-166.[45] Yu Hong-liang, Chen Jiao, Liu Sen, et al. Enzyme sensitive, surface engineered nanoparticles for enhanced delivery of camptothecin[J]. J Control Release, 2015, 216: 111-120.[46] Yang X, Deng W, Fu L, et al. Folate-functionalized polymeric micelles for tumor targeted delivery of a potent multidrug-resistance modulator FG020326[J]. J Biomed Mater Res A, 2008, 86(1): 48-60.[47] Jae Sung Lee, William L Murphy. Functionalizing calcium phosphate biomaterials with antibacterial silver particles [J]. Adv Mater, 2013, 25(8): 1173-1179.[48] Xiong Wei, Peng Li-xia, Chen Hong-bo. Surface modi?cation of MPEG-b-PCL-based nanoparticles via oxidative self-polymerization of dopamine for malignant melanoma therapy[J]. Int J Nanomedicine, 2015, 10: 2985-2996.[49] Gu G, Xia H, Hu Q, et al. PEG-co-PCL nanoparticles modi?ed with MMP-2/9 activatable low molecular weight protamine for enhanced targeted glioblastoma therapy[J]. Biomaterials, 2013, 34 (1): 196-208. |